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Abstract
Young star clusters are key objects to interpret a large number of astrophysical

processes, from star and binary formation to the hierarchical assembly of the Milky
Way. The spatial distribution and motions of young stars reflect the processes of
cluster formation, while the kinematics of more evolved systems and the age depen-
dence of their mass function inform us on how star clusters progressively dissolve
into the field of the Galaxy. Finally, being the place where the most massive stars
form, star clusters are building blocks for our comprehension of the formation of
compact objects, which we can detect through gravitational-wave observations.

Direct N−body simulations are usually adopted to integrate the evolution of
star clusters since their earliest phases, but we often assume quite unrealistic initial
conditions for such simulations. In particular, young star clusters display highly
non-trivial spatial and velocity distributions, with the presence of sub-structures,
sub-clump relative motions, mergers, rotation, and are far from virial and thermal
equilibrium. Hydro-dynamical simulations are an accurate method to obtain realistic
initial conditions for star forming regions. However, producing large sets of hydro-
dynamical simulations is prohibitively expensive in terms of computational time.

In Chapter 2, I introduce a novel algorithm to generate new star clusters from a
given set of star masses, positions and velocities from a hydro-dynamical simulation.
This method is based on a hierarchical clustering algorithm that learns a tree rep-
resentation of the cluster phase-space. This is later turned into new realizations by
modifying the initial branches of the tree (encoding the relations between the biggest
sub-clumps), while preserving the characteristics of small scale structure responsible
for most of the dynamical evolution. The new realizations qualitatively resemble the
original simulation, and show a realistic evolution at all scales. This method results
in a promising way to generate new mass and phase-space distributions from exist-
ing hydro-dynamical simulations, thus increasing our sample of initial conditions for
N−body simulations, at a tiny computational cost.

In Chapter 3, I provide an accurate modeling of the very first phases of the clus-
ter’s life. First, I make use of hydro-dynamical simulations of collapsing molecular
clouds, which, coupled with appropriate recipes for star formation, yield realistic ini-
tial conditions. Then, I introduce a new algorithm to associate a primordial binary
star population to the obtained stellar distributions. Finally, I quantify the impact
of primordial binaries on the global evolution of the cluster. I find that primordial
binaries accelerate the star cluster dissolution, and enhance the formation of a hot
core of massive objects. At the same time, the stellar environment dynamically cre-
ates additional binary systems with binding energy of the order of its kinetic energy.
In the absence of primordial binaries, these dynamically formed binaries reach a bi-
nary fraction that spontaneously reproduces the relation between the binary fraction
and stellar mass found in observations.

Young star clusters are an ideal environment for the formation of compact ob-
jects. Being the place where a large fraction of massive stars form, evolve, and
eventually die, they are expected to host populations of black holes (BHs). Such
BHs encode valuable information on their progenitor stars, which can otherwise only
be observed during their short lifetime. Over the last seven years, our knowledge of
stellar-mass BHs has drastically improved thanks to the detection of binary black
hole (BBH) mergers through gravitational waves. Thanks to these signals, we can
now study BHs with unprecedented precision, but our theoretical understanding of
their formation is still hampered by large model uncertainties and degeneracies.

I



Dynamical interactions in dense star clusters are considered one of the most
effective formation channels for BBH mergers. Also, they leave recognizable im-
prints on the BBH population, which can be used to disentangle them from other
formation pathways (e.g., mergers from isolated binaries). In Chapter 4, I explore
how dynamical interactions within young star clusters affect the properties of BBH
mergers. I find that dynamically active environments produce more massive BBH
mergers thanks to the high rate of dynamical exchanges, which favor the coupling of
the most massive BHs. Also, the high initial cluster densities trigger a large number
of stellar collisions. This, in turn, leads to a non-negligible number of BBH mergers
with primary mass in the pair-instability mass gap, where BHs are not expected to
form via isolated stellar evolution.

In massive star clusters, BHs born by the merger of other BHs can be retained,
dynamically form new BBHs, and merge again. This hierarchical merger process can
repeat several times and lead to a significant BH mass growth. Hierarchical mergers
are crucial to understand how stellar-mass black holes produce pair-instability and
intermediate-mass BHs, and to unveil the correlation between the BH properties and
those of their host stellar system. In Chapter 5, I explore the process of hierarchical
mergers in globular clusters, whose high escape velocities allow the clusters to retain
a large fraction of BBH merger remnants. I focus on the impact of star cluster
evolution on the efficiency of hierarchical mergers. In particular, I investigate the
importance of stellar evolution, two-body relaxation and tidal stripping by the host
galaxy. My results indicate that globular clusters can only host hierarchical BBH
mergers up to the third generation, i.e. at least one generation less than what
previously thought.

If, on the one hand, dynamical encounters in young star clusters shape the prop-
erties of BBHs, on the other hand BHs affect the structure of the host cluster.
In particular, the internal dynamical evolution tends to progressively segregate the
most massive objects at the cluster center, with increasingly lighter stars pushed
further and further away. BHs, being among the most massive objects within the
cluster, tend to concentrate at its center, quenching the segregation of massive stars.
As a consequence, the presence of a population of BHs in a given star cluster has a
direct and measurable impact on the observational properties of the cluster’ stellar
population. In Chapter 6, I look for signatures of the presence of BHs the Hyades
cluster, by comparing accurate N−body models to precise measurements from Gaia.
I find that even a few BHs can affect the properties of visible stars in a quantifiable
way, leading to less concentrated distributions. For the case of the Hyades, ∼ 3
BHs (total mass MBH ≈ 25M⊙) are favored to match the observed properties of the
cluster.
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M⊙ solar mass 1.98892× 1030 kg
R⊙ solar radius 6.957× 108 m
au astronomical unit 1.495978707× 1011 m
pc parsec 3.08567758149137× 1016 m
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Chapter 1

Star clusters and their black hole
populations

1.1 Star clusters in the Milky Way

Young stars are generally observed to be located near other young stars (Blaauw 1952,
1964). For this reason, it has long been assumed that stars are born in groups (Lada
& Lada 2003; Portegies Zwart et al. 2010). In the Milky Way Galaxy, evidence for this
comes from the global clustering of spectral O-type stars (Parker & Goodwin 2007), which
mainly (∼ 70%) reside in young clusters or associations (Gies 1987). In the nearby Orion B
star-forming region, where star formation is still ongoing, ∼ 96% of the stars are clustered
(Clarke et al. 2000). These groups subsequently disperse, and most stars in the Milky
Way follow lonely orbits, unrelated to their temporary neighbours, in what is commonly
referred to as the Galactic field. In some cases, stars might remain gravitationally bound
to their siblings, forming what is usually referred to as a star cluster (Portegies Zwart
et al. 2010).

As groups of coeval stars (born at the same time) sharing the same initial chemical
composition (born from the same molecular cloud), star clusters represent ideal labora-
tories to test stellar evolution models. Also, since estimating the age of and distance to a
cluster is easier than for individual field stars, clusters have long been used as tracers of
the structure and evolution of the Milky Way and its metallicity gradient (e.g., Cantat-
Gaudin et al. 2016; Spina et al. 2021). Understanding how clusters (and stars) form, and
how clusters are disrupted by the tidal forces of the Milky Way and by encounters with
giant molecular clouds is also crucial to reconstruct the evolution of our Galaxy (Gieles
et al. 2006). The velocity fields within the youngest clusters reveal their formation history,
while the kinematics of the older clusters and the age dependence of their mass function
test theories of cluster destruction Gilmore et al. (2022). Furthermore, each star cluster
provides a (near-)coeval snapshot of the stellar mass function, and a detailed study of
their stellar content is therefore important for understanding possible variations in the
initial mass function (Elmegreen 2004). Finally, being the place where the most massive
stars form, star clusters are building blocks for our comprehension of the formation of
compact objects, which we can detect through gravitational-wave observations.
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Star clusters and their black hole populations

1.1.1 What is a star cluster?

Star clusters represent a broad and in-homogeneous class of objects, spanning ages from a
few Myr to ∼ 10 Gyr, and masses from a few hundreds to several millions of solar masses.
As shown in Fig. 1.1, some star clusters are so compact and rich that stars become lost in
confusion in the frame shown, while others are so sparse and extended that most cluster
members are outside the frame. Still, objects like the Orion Nebula Cluster are forming
and, depending on the author, might not even be classified as a cluster (Krumholz et al.
2019).

Traditionally, star clusters have been identified as stellar over-densities: wherever a
group of stars appeared tightly distributed in the sky, it was assumed they formed a
physical cluster. In their review, Portegies Zwart et al. (2010) define a star cluster as a
set of stars that are gravitationally bound to one another, while the earlier review by Lada
& Lada (2003) defines a cluster as a collection of stars with a mass density large enough
(≳ 1M⊙ pc−3) to resist tidal disruption in Solar neighborhood conditions, and numerous
enough to avoid evaporation for at least 100 Myr.

Modern datasets, e.g. from Gaia (Gaia Collaboration et al. 2022), now allow us to
verify that these stars are indeed travelling together through the Milky Way (they share
a common proper motion and radial velocity) and are physically close enough to each
other to be considered physically related (their parallaxes indicate they are all the same
distance away from us). In particular, additional information from velocities is critical for
the census of sparser and less massive clusters: many apparent stellar over-densities are
not made of related stars and despite being located in the same region of the sky, and do
not share a common origin (the so called asterisms, Cantat-Gaudin & Anders 2020). For
example, NGC 1252 was previously classified as an open cluster, but it was later shown
to be merely an asterism (Krumholz et al. 2019).

1.1.2 Star clusters flavors

Star clusters are classified according to their age, density and mass. In general, we dis-
tinguish among four different kinds of star cluster.

Globular clusters (GCs) are old (∼ 12 Gyr), very massive (≥ 104M⊙) and dense
(central density ρc ≥ 104M⊙ pc−3) stellar systems. Our Galaxy hosts about 150 globular
clusters, and more than one half of them are within 10 kpc from the Galaxy center
(Harris 1996, 2010). Globular clusters are evolved systems which do not contain gas,
dust or young stars. Because of their mass and high central density, they are sites of
intense dynamical processes, which play a relevant role in the formation and merger of
compact-object binaries (Portegies Zwart & McMillan 2000; Downing et al. 2010).

Young star clusters (YSCs) are young (< 100 Myr) systems, thought to be the
most common birthplace of massive stars (Lada & Lada 2003; Portegies Zwart et al.
2010). In some cases, they are still (partially) embedded in their parent molecular cloud.
The central density of YSCs can be as high as that of GCs, although the former ones
have smaller sizes (see Fig. 1.2). Some YSCs have also comparable masses to present-
days GCs. However, because of the large stellar mass loss during their life, most YSCs
are not massive enough to evolve into present-day GCs. In particular, gas expulsion by
stellar winds and supernova (SN) explosions can eject the gas in which the cluster is
embedded, decreasing its gravitational binding and potentially causing its disruption - a
process referred to as infant mortality. A fraction of YSCs might survive this violent gas



1.1 Star clusters in the Milky Way

Figure 1.1: Images of a range of star clusters, along with NGC 1252, an object previously
classified as a cluster but now known to be an asterism. Figure from Krumholz et al.
(2019).

evaporation and evolve into open clusters.
Open clusters (OCs) are irregular star clusters composed from 10 to a few thousands

of stars (e.g., see the recent catalog from Tarricq et al. 2022). Open clusters are not long-
lived because they inevitably disrupt into the tidal field of their host galaxy as they lose
mass during their evolution. When YSCs and OCs dissolve into the Galaxy, their stellar
content is released into the field. Thus, it is reasonable to expect that a large fraction of
binaries, black holes, and binary black holes that are now in the field may have formed in
young star clusters, where they participated in the dynamics of the cluster.

Nuclear star clusters (NSCs) are rather common in the nuclei of galaxies, including
our own (Neumayer et al. 2020). These clusters are usually more massive and denser than
GCs, and may host a super-massive black hole (SMBH) at their center. Stellar-mass BHs
formed in the innermost regions of a galaxy could even be “trapped” in the accretion disc
of the central SMBH, triggering their merger (Gondán et al. 2018; Mapelli 2021).

1.1.3 Physical scales

On a theoretical point of view, an effective description of the star cluster size can be
given in terms of its Lagrangian radii, defined as distances from the center containing
specific fractions of the total cluster mass. In particular, the global scale of the system
is generally given by the half-mass radius (rhm, the 50% Lagrangian radius), that is is
the distance from the cluster center containing half of the total mass. For observers, a
similar definition can be formulated in terms of isophotes containing given fractions of
the total luminosity, and the projected half-light radius, the effective radius reff , is often
used. The relation between the half-mass and the effective radii, however, may not be



Star clusters and their black hole populations

Figure 1.2: Mass-radius diagram of Milky Way open clusters, massive young star clusters
(here labelled as young massive clusters), and old globular clusters. Gray dashed and
dotted lines represent lines of constant half-mass density (ρh = 3Mtot/(8πr

3
hm)) and re-

laxation time (trlx, see eq. 1.8), respectively. Figure from Portegies Zwart et al. (2010).



1.1 Star clusters in the Milky Way

trivial, as in the case where the mass-to-light ratio of the cluster varies with the distance
to the cluster centre, because of the presence of mass segregation and/or dark components
(Hurley 2007; Bianchini et al. 2017).

The tidal radius rt is the distance from the center of a star cluster where the gravita-
tional acceleration due to the cluster equals the tidal acceleration of the parent Galaxy.
As a practical matter, the Jacobi radius, that is the distance from the cluster center to
the lagrangian point L1, is commonly used to quantify the tidal boundary. For clusters
on circular orbits, this can be defined from the cluster mass M , and the orbital angular
frequency in the galaxy ω (Gieles & Baumgardt 2008):

rt =

(
GM

3ω2

)1/3

, (1.1)

where ω = VG/RG, RG is the galactocentric distance and VG is the circular orbital speed
around the galaxy center.

To identify the star cluster central regions, observers generally define the cluster core
radius rc as the distance from the cluster center at which the surface brightness drops by
a factor of two from the central value. On a theoretical point of view, at least two distinct
definitions of rc can be used, depending on the context. When the central density ρ0 and
velocity dispersion σ0 are easily and stably defined, like in analytic models (e.g., King
1966 models), the core radius is given by:

rc =

√
3σ2

0

4πGρ0
(1.2)

For typical cluster models, this corresponds roughly to the radius at which the three-
dimensional stellar density drops by a factor of 3, and the surface density by ∼ 2 (King
1966).
In N−body simulations, however, both ρ0 and σ0 are difficult to determine, as they are
subject to substantial stochastic fluctuations. As a result, a density-weighted core radius
is used instead. Specifically, for each star a local density ρi is defined using the star’s k
nearest neighbors (Casertano & Hut 1985), where k = 12 is a common choice. A density
center is then determined, as simply the location of the star having the greatest neighbor
density. The core radius, then, is the ρ2i−weighted root-mean-square stellar distance from
the density center:

rc =

√∑
i ρ

2
i r

2
i∑

i ρ
2
i

. (1.3)

Despite their rather different definitions, the two "theoretical" core radii behave quite
comparably in simulations (Portegies Zwart et al. 2010).

The dynamical timescale is the time required for a typical star to cross the system; it
is also the timescale on which the system re-establishes dynamical equilibrium (Binney &
Tremaine 2008):

tdyn =
rhm
σ
, (1.4)

where σ is the velocity dispersion within the half-mass radius.
As for velocities, a relevant scale for the retention of black holes and compact objects

is given by the escape velocity (Georgiev et al. 2009a,b; Fragione et al. 2020):

vesc = 40 km s−1

(
M

105M⊙

)1/3 (
ρhm

105M⊙ pc−3

)1/6

, (1.5)
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where ρhm is the density within the half-mass radius. The relevant time, mass, size, and
velocity scales for different star clusters types are reported in Tab. 1.1.3.

Cluster tage mto M rhm ρc trlx vesc location
[Gyr] [M⊙] [M⊙] [pc] [M⊙ pc−3] [Myr] [km s−1]

YSC ≲ 0.1 ≳ 5 ≳ 103 0.1− 10 ≳ 103 ≲ 100 ∼ 1 disk
OC ≲ 0.3 ≲ 4 ≲ 103 ≲ 10 ≲ 103 ≲ 100 ≲ 1 disk
GC ≳ 10 ∼ 0.8 ≳ 105 ≲ 50 ≳ 103 ≳ 104 ≳ 10 halo
NSC ≳ 10 − 106 − 109 ≲ 50 106 − 107 ≳ 105 ≳ 100 galactic center

Table 1.1: Column 1: SC type; column 2: SC age; column 3: turn-off mass; column
4: total SC mass; column 5: half-mass radius (for NSCs we refer to the effective radii
reported in Neumayer et al. 2020); column 6: density within the core; column 7: escape
velocity; column 8: relaxation time scale (defined in eq. 1.8); column 9: location where
these clusters are found.

1.2 Young star clusters
The majority of star formation occurs in embedded clusters (Lada & Lada 2003), but only
a small fraction of stars in the Galactic disk currently reside in clusters. This indicates
that most clusters and associations are relatively short-lived, as confirmed by the scarcity
of OCs with ages ≳ 1 Gyr (Tarricq et al. 2022; Gilmore et al. 2022).

The evolution of YSCs can be split into three phases: the first few Myr, during
which stars are still forming and the cluster contains significant amounts of ambient gas;
a subsequent period when the cluster is largely gas-free, but stellar mass loss plays an
important role in the overall dynamics; a late stage, during which purely stellar dynamical
processes dominate the long-term evolution of the cluster. An upper limit on the dividing
line between the first two phases is the time of the first supernovae in the cluster, about
3 Myr after formation, since these expel any remaining gas not already ejected by winds
and radiation from O- and B- type stars. The dividing line between the last two phases
may be anywhere between 100 Myr and 1 Gyr, depending on the initial mass, radius, and
density profile of the cluster and the stellar mass function.

1.2.1 Birth properties

The spatial distributions and motions of young stars reflect the processes of star clus-
ter formation. YSCs that are embedded or partially embedded in star-forming clouds
typically display clumpy distributions (e.g., Lada & Lada 2003; Kuhn et al. 2019; Cantat-
Gaudin et al. 2019). These groups, known as sub-clusters, typically form quite compact
(rhm ≈ 0.1 − 0.3 pc), with small radii comparable to the observational lower end of the
sizes of dense cores in giant molecular clouds (Marks & Kroupa 2011).

It is still unclear whether the sub-clusters will disperse once the molecular gas dis-
perses, or if they will merge into larger, possibly bound clusters that survive gas expul-
sion. Two principal paths from theoretical studies are: "monolithic" cluster formation, in
which a YSC is born in a single molecular cloud core, and "hierarchical" cluster forma-
tion, in which larger clusters are built via the assembly of smaller sub-clusters (Bonnell
et al. 2003; Banerjee & Kroupa 2015). Examination of the motions of these sub-clusters
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can help to reconstruct the formation scenarios of star clusters. The relative motions of
clusters within massive star forming regions generally show random motions (as displayed
in Fig. 1.3), likely inherited from the parent molecular clouds (Kuhn et al. 2019). They
do not generally have the convergent motions expected from hierarchical assembly, indi-
cating that any cluster merger occurred during an embedded phase before the clusters
were observed.

Also, the massive YSC R136 is rotating with a rotational velocity amplitude of about
3 km s−1, which implies that at least ∼ 20% of its total kinetic energy is in rotation
(Hénault-Brunet et al. 2012). As confirmed from the combination of hydro-dynamical
and N−body simulations, this feature can be explained as due to angular momentum
conservation in the collapse of the densest gas forming the stellar substructures, as well
as angular momentum transport by torques from the gas to the already formed sub-
structures (Mapelli 2017; Ballone et al. 2020). Some of these natal properties might even
survive the successive evolution of the stellar system, and leave an imprint on the observed
properties of older, relaxed stellar clusters (e.g., they may contribute to the signatures of
rotation visible in some globular clusters, van Leeuwen et al. 2000; Bianchini et al. 2013;
Kamann et al. 2018).

Figure 1.3: Kinematics of subclusters in NGC 2264 (left) and the Carina OB1 association
(right). The crosses mark sub-cluster centers, and the vectors indicate velocities of the
sub-clusters, as indicated by the velocity scale. Sub-cluster velocities in Carina tend to
be much larger than in the smaller, nearby NGC 2264 region. In both NGC 2264 and
Carina, nearby groups of stars tend to move in similar directions, but there is no overall
sign of sub-cluster mergers. Figure from Kuhn et al. (2019).

1.2.2 Early gas expulsion

The evolution of the cluster during the first phase is a complex mix of gas dynamics, stellar
dynamics, stellar evolution, and radiative transfer, and is currently poorly understood.
At the end of the star formation process, as a consequence of the developing winds of the
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most massive stars or the first supernovae, the residual gas is ejected from the embedded
cluster. The gas expulsion phase is expected to be short - on the order of some dynamical
times - and might place the remaining stellar population in a super-virial state, making the
young cluster vulnerable to dissolution (Goodwin & Bastian 2006; Baumgardt & Kroupa
2007). The sharp decrease in the number of young and embedded star clusters at an age
of a few Myr is thought to be a consequence of this early process, and is often referred to
as “infant mortality” (Lada & Lada 2003). The response of the cluster to the loss of the
residual gas depends on the gas expulsion time scale relative to the dynamical time scale
of the cluster. However, the local dynamical time depends strongly on the distance to the
cluster center. Real star-forming regions are hierarchically-structured, containing both
dense parts for which mass removal is slow compared to the local dynamical time, and
diffuse parts for which it is fast; this configuration may give rise to a gravitationally-bound
central region and an unbound periphery (Elmegreen 2008).

On the observational point of view, bulk expansion is commonly seen for young stellar
systems during the first few million years, with expansion velocities that can range up
to 2 km s−1 (Portegies Zwart et al. 2010). The Orion complex, which still hosts ongoing
star formation, and is perhaps the most studied and characterized nearby stellar complex
(Kounkel et al. 2018), exhibits kinematic substructures, and one in particular (λ Ori)
shows strong signs of radial expansion, attributed to a supernova explosion. In general,
stellar systems that are no longer embedded in their natal molecular clouds or only par-
tially embedded are statistically more likely to be in a state of expansion than systems
that are still embedded. This result is consistent with expansion as a consequence of gas
expulsion, but it is also possible that cloud dispersal and expansion of stellar systems
occur simultaneously but independently (Portegies Zwart et al. 2010).

1.2.3 Stellar mass losss

Young star clusters that survive the early gas expulsion continue to lose mass through
stellar evolution. During this phase, the most massive (≳ 50M⊙) stars leave the main-
sequence within (≲ 4 Myr), and can lose up 90% of their mass by the time they collapse
to a black hole. For a Kroupa (2001) IMF between 0.1M⊙ and 100M⊙ the total cluster
mass decreases by roughly 10%, 20%, and 30% during the first 10, 100, and 500 Myr
(Portegies Zwart et al. 2010).

For YSCs, the expansion due to stellar mass loss can even result in its complete
disruption, and is stronger if the most massive stars are more segregated at the cluster
center (Vesperini et al. 2009, see Sect. 1.3.3 for more details about mass segregation).
In particular, when the half-mass radius becomes comparable to its tidal radius (rt ∼
2 rhm), the clusters loses equilibrium and most of its stars become unbound (Takahashi &
Portegies Zwart 2000; Baumgardt & Makino 2003). In Chap. 3, I will quantify the impact
of stellar evolution on the mass loss and the global evolution of young star clusters, by
comparing N−body simulations with and without stellar evolution. Also, I will study the
impact of primordial populations of binaries (see Sect. 1.2.4), which, in this phase, play
a relevant role.

Eventually, the cluster can continue to expand until it completely dissolves or until its
core starts to contract again due to internal dynamical effects. At this point, the evolution
of the cluster is completely dominated by dynamical interactions (see Sect. 1.3).
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1.2.4 Primordial binaries

A large fraction of O- and B- type stars form as members of binary and higher order
systems, with typical separations ≲ 0.1 pc (Moe & Di Stefano 2017; Offner et al. 2022).
To quantify the fraction of multiple systems, we may refer to the multiplicity fraction
(sometimes simply named binary fraction), defined as the as the fraction of primaries
with at least one companion:

fmult =
Nbin +Ntrip +Nquad + ...

Nsing +Nbin +Ntrip +Nquad + ...
, (1.6)

where Nbin, Ntrip, Nquad are the number of binary, triple, and quadruple systems, respec-
tively. Also, we can define the companion frequency is the average frequency of compan-
ions per primary:

fcomp =
Nbin + 2Ntrip + 3Nquad + ...

Nsing +Nbin +Ntrip +Nquad + ...
. (1.7)

Figure 1.4 displays how the multiplicity and the companion fractions vary with the spectral
type of the primary star.

Given the high densities of young stellar clusters, binary and multiple systems can
actively interact with the surrounding stars since the very beginning of their life. On the
one hand, binary stars contain a large reservoir of internal energy, which can be transferred
to other stars in the host star cluster, through three- and multi-body encounters (e.g.,
Heggie 1975; Hut 1983). On the other hand, the global evolution of the cluster shapes
the properties of the binary population and of the resulting population of binary compact
objects. When dealing with binary stars in star clusters, we usually distinguish between
two fundamental types of binaries:

• original (or “primordial”) binaries, which formed simultaneously with the stars in
the cluster, as a crucial part of the star-formation process (Goodman & Hut 1989),

• exchanged (or “dynamical”) binaries, which formed later via stellar interactions.

Binary stars within star clusters are also closely related to the formation of exotic
objects, as they often form via internal binary evolution or during dynamical interactions
between binaries and other stars. For example, the formation of blue straggler stars,
colliding wind binaries, and anomalous X-ray pulsars, all require the presence of binary
stars in the system (Portegies Zwart et al. 2010).

1.2.5 Not all stars are born in clusters?

While many stars form in gravitationally-bound clusters, and some clusters likely do
undergo a ordered bulk expansion, recent results from OB associations (e.g., see Wright
2020 for a recent review) hint at the possibility of alternative formation scenarios. In
particular, a number of observational studies with Gaia have shown that OB associations
are born extended and highly sub-structured, and only exhibit slow expansion patterns
(Mel’nik & Dambis 2017; Kuhn et al. 2019). Also, their proper motions reveal many
kinematic substructures, and are not compatible with models that trace radial expansion
(Ward & Kruijssen 2018; Ward et al. 2020). As a consequence, these OB associations are
likely not be the expanded remnants of dense clusters.
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Figure 1.4: Multiplicity fraction fmult, here named MF (left; thick), triple/high-order
fraction (THF, left; thin), and companion frequency fcomp, here named CF (right), of
brown dwarfs and main sequence stars. The indicated spectral types at the top roughly
correspond to the mean primary masses of field dwarfs. Figure from Offner et al. (2022).

Further support for this scenario comes from the observation of coeval populations
that are spatially too extended to be the result of expansion (Kruijssen 2012), as in
the case of the Vela-Puppis region (e.g., see Cantat-Gaudin et al. 2019). Finally, the
distribution of sizes and densities between the structures once called associations and those
called clusters actually show a continuous distribution, making the distinction somehow
arbitrary (Cantat-Gaudin 2022). All these results suggest that a fraction of stars may
form across continuous density distributions throughout molecular clouds, rather than
exclusively within clusters.

1.3 Dynamical evolution of star clusters
When the cluster is largely gas-free, its evolution is driven by individual stellar encounters,
which main effect is to modify the stellar velocities, both in magnitude and direction, and
to perturb stars away from their original trajectories. After many such encounters, the
star eventually loses its memory of the original orbit, and finds itself on a wholly unrelated
one. The characteristic time over which this loss of memory occurs is called the relaxation
time trlx (Spitzer 1987):

trlx = 0.138
M r

3/2
hm

m1/2G1/2 ln(Λ)
, (1.8)

where M is the total mass of the cluster, rhm is the half-mass radius, m is the the mean
cluster mass, and ln(Λ) is the Coulomb logarithm, which depends weakly on the number of
cluster stars. In particular, ln(Λ) = ln(γN), with γ = 0.02 for multi-mass systems (Giersz
et al. 2008) and can be roughly considered as constant ln(Λ) = 10. The relaxation time
is longer for stellar systems with larger number of stars. For a star cluster in virial
equilibrium, it scales with the number of particles as (Bertin 2014):

trlx
tdyn

∼ N

ln(N)
, (1.9)
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where tdyn is defined in eq. 1.4.
Figure 1.2 and Tab. 1.1.3 display the typical mass, size and relaxation timescales for

different cluster types. YSCs typically display relaxation timescales of 10 − 100 Myr,
an order of magnitude shorter than old and more massive GCs. This peculiarity allows
relaxation processes to affect the cluster structure since the early phases of its life.

1.3.1 Gravothermal instability

For timescales longer than trlx, the cumulative effect of two-body encounters on stellar
motions is a random walk in the velocity space. In particular, if the velocity distribution is
not in kinetic equilibrium, there will be a net diffusion in the velocity space, in the direction
of reducing the deviations from this equilibrium, i.e. from the Maxwellian distribution.
This process has a fundamental impact on the internal structure of the cluster. More
specifically, two-body relaxation drives a flux of kinetic energy, carried by stars, from the
center of the cluster to its outskirts. According to the virial theorem, for a self-gravitating
system with a total energy E:

E = −K =
W

2
, (1.10)

where K is the total kinetic energy and W is the total gravitational energy. If the system
loses energy (E is negative, so its absolute value increases), W becomes more negative
and K increases: the system becomes hotter as it loses energy and cools as it is heated:
the system has negative specific heat. If such a bound system is in thermal contact with
a heat sink (a colder system), heat flows into the sink and the kinetic energies of the
particles in the gravitationally bound system increase steadily as the system contracts,
losing energy.

Within a single cluster, when stars move from the hotter core to the colder halo, they
carry heat with them. As the core loses energy, it collapses, thus it increases its velocity
dispersion (it becomes hotter). Thus, the core loses energy to the outer regions, contracts
and heats up in the process. The increase of mean square random velocity in the core then
encourages additional flow of heat to the surrounding regions, increasing the rate of core
collapse (Spitzer 1987). This results in a runaway process called gravothermal catastrophe,
and is a consequence of the negative heat capacity typical of every self-gravitating system
(Spitzer 1987). As the stellar halo expands, some stars reach high enough velocities to
escape the cluster, in a process called evaporation. This process is further accelerated
if stars have a mass spectrum.

1.3.2 Energy equipartition

As a consequence of dynamical encounters stars with different masses tend to erase their
kinetic energy differences and reach a condition of thermodynamical equilibrium, in which
their temperatures (the mean kinetic energies) are constant. If we consider two generic
components i and j, energy equipartition can be expressed as a condition of isothermality
between them (Ti = Tj):

miσ
2
i = mjσ

2
j , (1.11)

where mi,j and σi,j are the mass and velocity dispersion of the i, j component, respectively.
For realistic initial mass functions (e.g. N(m) ∝ m−2.3, Kroupa 2001), the pathway

towards equipartition breaks, and the population of the most massive objects (massive
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stars first, then black holes) dynamically decouples from the lightest objects (Spitzer
1969). This leads to the formation of a independent sub-cluster of massive objects, which
interact only among themselves. This sub-cluster, being hotter than the surrounding
cluster, acts as an additional internal energy source for the whole system, accelerating its
disruption, as described in detail in Sect. 1.5.2.

1.3.3 Mass segregation

As the temperature of the heavier stars approaches that of the lighter stars, the former
ones will tend to acquire lower random velocities and sink towards the center of the
cluster. On the other hand the lighter stars, which acquire higher random velocities,
move outwards and populate the outermost regions of the cluster. The system will thus
tend to be characterized by a stratification in mass, usually called mass segregation. The
timescale on which mass segregation sets in for a star of mass m⋆ in a cluster of stars with
mean mass ⟨m⟩ is given by the dynamical friction timescale:

tdf =
⟨m⟩
m⋆

trlx. (1.12)

The presence of a mass spectrum accelerates the tendency towards core collapse. In star
clusters with a mass spectrum, the core collapse occurs on the dynamical friction timescale,
rather than the two-body relaxation one. Also, the steeper is the mass spectrum, the
faster is the core collapse (Fujii & Portegies Zwart 2014). For YSCs, the typically short
relaxation timescales (Sect. 1.3) allow the most massive stars to segregate at the cluster
center before evolving into black holes. This triggers dynamical interactions and even
direct collisions between stars and binary stars (see Capt. 4).

1.3.4 Halting core collapse with binaries

The tendency towards core collapse (see Sect. 1.3.1) increases the cluster central density,
and produces an ideal environment for dynamical interactions between stars and binaries
to take place at high rates. In particular, the rate of encounters between a binary and a
single star depends on the density as (Binney & Tremaine 2008):

Γ1+2 = 4
√
πnσr2ra

[
1 +

G(mbin +m)

2σrca

]
, (1.13)

where n, m, and σ are the single stars number density, average mass, and velocity dis-
persion, mbin is the mass of the binary, and rca is the closest approach distance. For the
encounter to result in energy exchange between the single and the binary star, the en-
counter needs to be close enough to perturb the binary orbital parameters. This happens
only if the single star approaches the binary by few orbital separations. As shown in eq.
1.13, for this to happen with a non-negligible frequency, the binary must be in a dense
environment, because the rate of three-body encounters scales with the local density of
stars. If in the cluster core no binaries are present, they can be formed via three-body en-
counters of single stars. The timescale to form a binary star by this process is (Goodman
& Hut 1993):

t3bb = 5.5× 106
(
106 pc−3

n

)2(
σ1D

30 km/s

)9(
20M⊙

m

)5
1

N
Myr, (1.14)
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where σ1D is the 1-dimensional velocity dispersion, and N is the number of interacting
objects in the core. As the system approaches core collapse, binary stars form (if they are
not already present) and interact with the surrounding stars via thee-body encounters.
Hereafter, we will define a three-body encounter as a close encounter between a binary
and a single star.

Hard binaries

During a three-body encounter, a fraction of the binary internal energy is redistributed
as energy among the interacting bodies. Statistically, three-body encounters can have
different outcomes depending on the kinetic energy of the single and the binding energy
of the binary (Heggie 1975; Heggie & Hut 2003):

Ebin =
Gm1m2

2a
, (1.15)

where, m1, m2 are the masses of the binary members and a is the binary semi-major
axis. In the context of stellar clusters, a binary is considered as hard if its binding energy
Ebin is greater than the average kinetic energy of neighboring stars, while it is soft in the
opposite case. On average, subsequent encounters make hard binaries harder (i.e. their
semi-major axis shrinks), while soft binaries tend to become softer (i.e. wider semi-major
axis) until they break up (Heggie 1975). Hardness is a property of the binary relative to
its environment. Due to the higher velocity dispersion, the same binary in the core of a
cluster might be soft, whereas in the halo it would be hard.

The kinetic energy released by hard binaries through three-body encounters can be
used to reverse core collapse. During this core bounce, the thermal energy generated
builds up in and around the core faster than it can be conducted away. This causes an
expansion and cooling of the core and its immediate surroundings, because of the negative
specific heat. If the core collapse is sufficiently deep, the expanding core can actually cool
to temperatures below that of its surroundings (Heggie & Hut 2003).

1.3.5 Tidal stripping

Despite being bound by gravity, YSCs and OCs slowly dissolve over time scales of several
hundred million years (See Sect 1.2), and stars progressively disperse into the Galactic
field. As explained in Sect. 1.3.1, relaxation processes accelerate stars to velocities higher
than the cluster’s escape velocity, leading to cluster evaporation. This is a consequence
of the steady loss of stars from the cluster driven by the continuous re-population of the
high-velocity tail of the Maxwellian velocity distribution. At the same time, the expansion
of the cluster, as a consequence of early gas expulsion (Sect. 1.2.2), stellar mass loss, or
relaxation (Sect. 1.3.1) exposes its outermost regions to the tidal field of the host galaxy.

Tidal stripping is the prompt removal of stars that find themselves outside the cluster
tidal radius (eq. 1.1) due to internal processes such as stellar mass loss or a change in
the external tidal field (e.g., as the cluster approaches pericenter in its orbit around the
parent galaxy). On a ∼ 100 Myr time scale, and for clusters with masses ≳ 104M⊙,
relaxation is unlikely to be important, and so tidal stripping dominates the cluster mass
loss (Portegies Zwart et al. 2010). When tidal stripping is effective, clusters preferentially
lose stars through their Lagrange points L1 an L2 (e.g., Küpper et al. 2008; Portegies
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Zwart et al. 2010), leading to the formation of two so-called tidal tails, made up of stellar
escapers.

Until few years ago, tidal tails had mainly been observed in GCs (e.g., Gieles et al.
2021), which are denser, more massive, older, and often further from the Galactic plane
than OCs. Recently, it has been possible to detect these spatial elongations in a clear
way for a number of OCs, like the Hyades or the Praesepe cluster (Röser et al. 2011,
see Fig. 1.5). For the Hyades (Reino et al. 2018; Röser et al. 2019) it has been possible
to trace tidal tails over a distance of 800 pc (Jerabkova et al. 2021). This additional
information, when combined with proper dynamical modeling, can provide information
to predict the final fate of OCs. For example, the Hyades cluster are predicted to become
entirely unbound within the next 30 Myr (Oh & Evans 2020).

Figure 1.5: Members of the Praesepe cluster (NGC 2632) identified by Röser et al. (2011),
displayed in Cartesian Galactic coordinates centred on the cluster. The grey, orange, and
cyan points are secure, likely, and possible members of the cluster, respectively. The
shaded background is the tidal tail model from Kharchenko et al. (2009). Figure from
Cantat-Gaudin (2022).

1.4 Stellar-mass black holes
A black hole (BH) can be defined as a region of the space-time that cannot communicate
with the external Universe. The boundary of this region is called the surface of the BH,
or event horizon (Shapiro & Teukolsky 1983). In principle, any mass mBH can become
a BH, provided that there is a process able to confine it inside the event horizon. The
radius of this boundary depends on the mass of the collapsed object, and is given by its
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Schwarzschild radius:
rsch =

2GmBH

c2
. (1.16)

As a reference, the Schwarzschild radius for 1M⊙ is ≈ 3 km.
The possibility that the evolution of a star could lead to the formation of a BH was

first recognized in the 1930’s, soon after Chandrasekhar’s discovery of a maximum value
for the mass of a white dwarf. The existence of this maximum implied that a massive
stellar core could collapse into a region of space in which gravity was overwhelming. Many
astrophysicists found this outcome for stellar evolution unacceptable, if not absurd. In
1935, Eddington made this view very clear when he wrote:
“The star apparently has to go on radiating and radiating and contracting and contract-
ing until, I suppose, it gets down to a few kilometers radius when gravity becomes strong
enough to hold the radiation and the star can at last find peace... I felt driven to the con-
clusion that this was almost a reductio ad absurdum of the relativistic degeneracy formula.
Various accidents may intervene to save the star, but I want more protection than that. I
think that there should be a law of Nature to prevent the star from behaving in this absurd
way.”

At the present day, it is well established that stellar evolution provides a valid mech-
anism for generating such exotic objects: stars with initial mass in excess of ≈ 8M⊙ end
their lives in a violent supernova (SN) explosion, leaving behind a compact remnant in
the form of either a neutron star (NS) or, if the star initial mass exceeds ≈ 20M⊙, a BH.
However, prior to the detection of gravitational waves (GWs), our knowledge of stellar-
mass BHs lacked of a strong observational counterpart. In particular, we were limited to
electromagnetic observations of Galactic BH X-ray binaries, that is binary systems con-
sisting of a visible star and and invisible compact object. X-rays are produced by mass
flowing from the star into the strong gravitational field of the invisible compact object.
Observations from X-ray binaries lead to the discovery of a handful of known BHs with
confirmed dynamical mass measurements, most of them with mass ≲ 15M⊙ (Özel et al.
2010; Farr et al. 2011), as shown in Fig. 1.6. Also, only few theoretical models predicted
the existence of BHs with masses ≳ 20M⊙ (Heger et al. 2003; Mapelli et al. 2009, 2013;
Belczynski et al. 2010; Spera et al. 2015).

1.4.1 Black holes in the gravitational wave era

On September 14 2015, the LIGO interferometers captured a gravitational wave (GW)
signal from two merging BHs (Abbott et al. 2016). The event, named GW150914, was
attributed to the coalescence of two stellar-mass BHs with masses m1 = 36+5

−4M⊙ and
m2 = 29+4

−4M⊙. GW150914 established the existence of binary black holes (BBHs) and
that stellar-mass BHs can merge in a Hubble time, becoming detectable sources of GWs.
Also, it laid the foundations of a new way to investigate the Universe, by studying the
properties of compact objects with unprecedented precision.

At the present day, the Ligo-Virgo-Kagra collaboration (LVK) has completed three
observing runs and detected the merger of several tens (∼ 90) of compact object binaries
(e.g., Abbott et al. 2016b, 2019, 2021f,d,e). The catalog already contains a many events
that challenge up-to-date theoretical models. For instance, GW190814 (Abbott et al.
2020c) is an event with very asymmetric masses, a merger that most theoretical models
find very difficult to explain. Furthermore, the lightest member is of uncertain nature:
it can be the heaviest NS or the lightest BH ever observed. GW190521 (Abbott et al.
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Figure 1.6: Masses of all the detected and observed NSs and BHs so far. Credits: LIGO-
Virgo-KAGRA / Aaron Geller / Northwestern. Image from this link.

2020) is the event1 with the heaviest BHs, with at least one of the two falling in the pair-
instability mass gap (see Sect. 1.4.4). Its merger product, a BH with mass 148+28

−16M⊙ ,
is the first confirmation of the existence of intermediate-mass BHs. GW200105_162426
and GW200115_042309 are the first BH - NSs ever observed (Abbott et al. 2021a).
GW170817 (Abbott et al. 2017c) is associated with a merger of two NSs and it is the only
event observed not only through GWs but also throughout the whole electromagnetic
spectrum, a crucial milestone for multi-messenger astronomy Abbott et al. (2017d).

All these detections are contributing to improve our understanding the formation and
evolution of compact-object binaries and their progenitor stars. The discovery of GWs
gave an unprecedented boost to the development of new theoretical models, with a new
goal: providing an astrophysical interpretation to GW sources.

1.4.2 Formation channels of gravitational waves sources

Many stars, especially the more massive ones, are born in binaries or higher multiple stellar
systems (see Sect. 1.2.4), with a multiplicity fraction that increases with the mass of the
primary star (Moe & Di Stefano 2017; Offner et al. 2022). Thus, most BH progenitors
form as members of binaries, triples, and even quadruple stellar systems. Studying the
interactions between these close stars is crucial to reconstruct the evolutionary history of
GW mergers.

The timescales of GW coalescence for a BBH with component mass m1 and m2 was

1With signal-to-noise ratio S/N > 10 and a probability of being of astrophysical origin > 90%.

https://media.ligo.northwestern.edu/gallery/mass-plot
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derived analytically by Peters (1964)2:

tGW =
3

85

a4c5

G3m1m2(m1 +m2)
(1− e2)7/2, (1.17)

where e and a are the eccentricity and semi-major axis of the binary, respectively. Based
on this formula, two BHs of 10M⊙ in a circular orbit, must have an initial semi-major
axis smaller than ∼ 0.1 au to merge within a Hubble time. At solar metallicity, the stellar
progenitors have about 30M⊙ zero-age main sequence mass and a radius of ∼ 20R⊙,
corresponding to ∼ 0.18 au. The members of this binary system could not form at such
small separation, because they would have collided during the main-sequence phase, even
without considering the following giant phase. The progenitors of merging BBHs, thus,
must have been born at wider separations, and subsequently brought closer to each other
by various mechanisms (Spera et al. 2022).

From the theoretical point of view, two main formation channels have been proposed
to explain merging compact objects. In the isolated formation channel (Sect. 1.4.3), two
progenitor stars are bound since their formation, evolve, and then turn into (merging)
compact objects at the end of their life, without experiencing any kind of external pertur-
bation. This scenario is driven mainly by single and binary stellar evolution processes. In
the dynamical formation channel (Sect. 1.6), two compact objects get very close to each
other after one (or more) gravitational interactions with other stars or compact objects.
This evolutionary scenario is quite common in dense stellar environments (e.g. YSCs,
GCs, NSCs), and is driven mainly by stellar dynamics.

1.4.3 The isolated formation scenario

Naively, one could think that if two massive stars are members of a binary system, they
will eventually become a BBH and the mass of each BH will be the same as if its progenitor
star was a single star. This is true only if the binary system is sufficiently wide (detached
binary) for its entire evolution. If the binary members are close enough, they will evolve
through several processes which might significantly change their final fate. In particular,
the nature and mass of the stellar remnant depends crucially on the final properties of
the stellar core, which, in turn, depend on the amount of mass a star has lost or accreted
during its life.

Mass transfer

An efficient way to transfer mass from a star to its companion is via Roche lobe overflow.
The Roche lobe of a star in a binary system is the maximum equipotential surface around
the star within which matter is bound. If the stellar radius is relatively large compared to
the size of the binary, the external layers of the star may be stripped out by the gravity
of the companion and the centrifugal force of the binary motion.

Roche-lobe overflow can be caused by either the primary star entering the giant phase
and increasing in radius, or by the shrinking of the binary orbit due to tides. If the radius
of one of the stars exceeds its Roche radius, part of the material will be accreted by the
companion star, while some material may be dispersed in a circumbinary disk. If all the

2This formula is a zeroth order approximation to describe the evolution of unperturbed BBHs. Also,
it assumes that the eccentricity does not change with time.
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mass lost by one star is accreted by the other and no mass is dispersed, we are in the
case of conservative mass transfer. The material that is lost during non-conservative mass
transfer will carry out not only mass but also angular momentum from the binary. If mass
transfer is dynamically unstable or both stars overfill their Roche lobe, then the binary
is expected to merge – if the donor lacks a steep density gradient between the core and
the envelope –, or to enter common envelope (CE) – if the donor has a clear distinction
between core and envelope (Mapelli 2021).

Common envelope (CE)

If two stars enter in CE, their envelope(s) stop corotating with their cores. The two stellar
cores (or the compact remnant and the core of the star, if the binary is already single
degenerate) are embedded in the same non-corotating envelope, which exerts a drag force.
Because of the drag, the two cores begin an inspiral phase, during which orbital energy
and angular momentum are transferred to the envelope, which heats up and expands.
After the inspiral sets in, only two outcomes are possible. If the envelope is too tightly
bound, the inspiral continues until the two cores are tidally disrupted and the binary
merges into a single star. If, instead, the envelope is ejected, a short-period binary forms
(Eggleton 2006).

The most commonly adopted formalism to model common envelope in population-
synthes codes is the so-called α−λ model, which is based on energy balance considerations
(Webbink 1984). The main idea of this approach is to compare the orbital energy of the
binary at the onset of CE with the binding energy of the envelope. By comparing these
two energies, it is possible to determine whether or not the binary will survive the CE and
to estimate the final size of the binary. The model depends on two unknown parameters,
α and λ, which parameterize the CE efficiency (i.e. how efficiency orbital energy is used
to unbind the envelope) and the envelope binding energy, respectively. The λ parameter
measures the concentration of the envelope: the smaller λ, the more concentrated the
envelope (Mapelli 2021):

Eenv =
G

λ

[
menv,1m1

R1

+
menv,2m2

R2

]
(1.18)

here m1 (m2) is the mass of the primary (secondary) member of the binary, and menv,1

(menv,2) and R1 (R2) are the mass of the envelope and the radius of the primary (sec-
ondary) member of the binary. The envelope binding energy is then compared to the
difference in orbital energy due to the inspiral. The parameter α quantifies the fraction
of the removed orbital energy that is transferred to the envelope (Mapelli 2021):

∆E = α(Eb,f − Eb,i) = α
Gmc1mc2

2

(
1

af
− 1

ai

)
(1.19)

where Eb,i (Eb,f) is the orbital binding energy of the two cores before (after) the CE phase,
ai (af) is the semi-major axis before (after) the CE phase, mc1 and mc2 are the masses of
the two cores. If the primary is already a compact object, mc2 is the mass of the compact
object.

By setting ∆E = Eenv, we can derive the value of the final semi-major axis af for
which the envelope is ejected:
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If af is lower than the sum of the radii of the two cores (or the sum of the Roche lobe
radii of the cores), then the binary will merge during CE, otherwise it will survive and
eq. 1.20 quantify us the final orbital separation (Claeys et al. 2014).

The α−λ model is a very simplistic approach, because it hides behind two parameters
the complex physics processes that happen during CE evolution. Because of this, large
(and seemingly nonphysical) values of the α parameter in population-synthesis simulations
(≳ 3) seem to be necessary to match the merger rate of binary NSs inferred by LVK
detections (e.g., see Giacobbo & Mapelli 2018).

BBH mergers from isolated binaries

Figure 1.7 illustrates schematically how the evolution of an isolated stellar binary can
give birth to merging BHs like GW150914 and other massive BHs observed by the LVK
collaboration (Belczynski et al. 2016a).

Initially, the two stars are both on the main sequence. When the most massive one
leaves the main sequence, which happens usually on a time-scale of few Myr for massive
stars with zero-age main sequence mass mZAMS > 30M⊙, its radius starts inflating and
can grow by a factor of a hundreds. The most massive star becomes a giant star with a
helium core and a large hydrogen envelope. If its radius equals the Roche lobe, the system
starts a stable mass-transfer episode (Sect. 1.4.3). Some mass is lost by the system, some
is transferred to the companion. After several additional evolutionary stages, the primary
star collapses to a BH (a direct collapse is preferred with respect to a SN explosion if we
want the BH to be rather massive). At this stage the system is still quite large (hundreds
to thousands of R⊙).

When also the secondary star leaves the mains sequence, growing in radius, the system
enters a CE phase (Sect. 1.4.3): the BH and the helium core spiral in. If the orbital energy
is not sufficient to unbind the envelope, then the BH merges with the helium core leaving a
single BH. In contrast, if the envelope is ejected, we are left with a new binary, composed
of the BH and of a stripped naked helium star. The new binary has a much smaller
orbital separation (tens of R⊙) than the pre-CE binary, because of the spiral-in. If this
new binary remains bound after the naked helium star undergoes a SN explosion or if the
naked helium star is sufficiently massive to directly collapse to a BH, the system evolves
into a close BBH, which might merge within a Hubble time (Mapelli 2021).

1.4.4 Black holes in the pair-instability mass gap

Theoretical models of single-star evolution predict the existence of a gap in the mass
spectrum of compact remnant, which extends from ∼ 60M⊙ to ∼ 120M⊙. The main
mechanisms behind the formation of this gap are the pulsational pair-instability supernova
(PPISN) and the pair-instability supernova (PISN) (Fryer et al. 2001).

In massive stars, if the core temperature rises above ∼ 7 × 108 K, photons become
energetic enough to create electron-positron pairs. This process converts energy (gamma
photons) into rest mass (electrons and positrons), and thus lowers the radiation pressure,
triggering stellar collapse (Rakavy & Shaviv 1967; Fraley 1968). In stars with helium core
masses between ∼ 30M⊙ and ∼ 60M⊙, the collapse is reversed by O- or Si- core burning,
which shows up as a pulse and makes the core expand and cool. The flash is not energetic
enough to disrupt the star but it significantly enhances mass loss, especially from the
outermost stellar layers. The core then begins a series of contractions and expansions (i.e.
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Figure 1.7: Formation and evolution of a binary system that results in a merger with
similar masses as GW150914 (Abbott et al. 2016). Legend: MS, main-sequence star; HG,
Hertzsprung-gap star; CHeB,core-helium-burning star; BH, black hole; a, orbital semi-
major axis; e, eccentricity. Figure from Belczynski et al. (2016a).
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PPISN) that continue until the entropy becomes low enough to avoid the pair instability
(PI) and stabilize the core until the core-collapse SN explosion. In contrast, in stars with
helium core masses between ∼ 60M⊙ and ∼ 120M⊙, the first pulse is energetic enough
to completely disrupt the entire star (i.e. PISN). Stars with helium cores above ∼ 120M⊙
experience a rapid PI-induced collapse but the energy released by nuclear burning is
not enough to reverse the collapse before photodisintegration (endothermic) becomes the
dominant photon-interaction mechanism (Fryer et al. 2001).

Figure 1.8 shows a typical example of a BH mass spectrum, obtained from a population
of single stars, at various metallicities (Spera & Mapelli 2017). The net effect brought
about by PPISNe and PISNe is to create a gap in the BH mass spectrum from ∼ 60M⊙
to ∼ 120M⊙. The values of the lower and upper limit are highly uncertain because they
strongly depend on metallicity, on the adopted stellar-wind models, on the boundaries of
helium core masses or the occurrence of PPISNe and PISNe, on nuclear reaction rates,
on stellar rotation, on the treatment of convection, and on the SN explosion mechanism
(Farmer et al. 2020; Mapelli et al. 2021b; Farrell et al. 2021; Belczynski et al. 2020; Costa
et al. 2022). Overall, considering all the main known uncertainties so far, the lower limit
ranges between Mlow ∈ [40M⊙; 75M⊙]. As for the upper limit, Mhigh, the scenario is more
complex, and the range for Mhigh ∈ [120M⊙; 200M⊙] (Spera et al. 2022).

Figure 1.8: Mass of the BH as a function of the zero-age main sequence (here, ZAMS)
mass of its progenitor star, for different values of metallicity Z ∈ [2× 10−4, 2× 10−2].
The shaded yellow area shows the location of the pair-instability mass gap. Figure from
Spera & Mapelli (2017).

1.5 Black holes in star clusters

1.5.1 Supernova kicks and black hole retention

Some, if not all, compact objects receive quite high kicks at birth (Gunn & Ostriker 1970).
From the theoretical point of view, these kicks are imparted by asymmetries in the SN
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ejecta (e.g., Wongwathanarat et al. 2013). Natal kicks can vary from ∼ 10 km s−1 to
∼ 1000 km s−1, depending mainly on the steepness of the density profile at the outer edge
of the stellar core, and on the stochastic variations of non-radial instabilities associated
with the SN engine. Thus, shallow (steep) density profiles are more (less) prone to SN
shock stalling, thus neutrinos will be able to interact with more (less) material and produce
more- (less-)asymmetric ejecta (Spera et al. 2022).

On the observational point of view, most information about supernova kicks come
from Galactic pulsars, which are observed to display fairly large spatial velocities, as high
as ∼ 1000 km s−1. Their three-dimensional speeds are well fit by a Maxwell-Boltzmann
distribution with σ1D = 265 km s−1 (Hobbs et al. 2005). Assuming that BHs share the
same formation mechanism as NSs and that kicks are driven by the asymmetries in the
SN ejecta, BH kicks are expected to be smaller than NSs’, with differences coming mainly
from the heavier mass of BHs and the smaller amounts of ejecta.

This theoretical argument is poorly supported by observations, because BH kicks lack
strong observational constraints. Studies on distances from the Galactic plane (Repetto
et al. 2012; Repetto & Nelemans 2015) and on the motions (Atri et al. 2019) of some BH
X-ray binaries can only be explained if BHs acquire high kicks at birth. In particular, Atri
et al. (2019) suggest that an unimodal Gaussian distribution with a mean of ∼ 100 km s−1

is favored to match the observed kicks. In contrast, the recently-discovered massive X-
ray-faint binary VFTS 243 can be explained by little or no ejected material or BH kick
(Shenar et al. 2022).

Velocity kicks have multiple consequences for the formation of merging compact ob-
jects. Besides breaking binaries, they can re-align the binary orbital plane, or misalign
it with respect to the stellar spin vectors. In fact, SN kicks can tilt and even flip the
orbital plane of the binary, resulting in spin-orbit misalignment (Steinle & Kesden 2021).
Also, natal kicks can eject compact objects and binaries from their birth star clusters,
depending on the cluster escape velocity. Thus, they have a relevant impact on the BH
retention within the cluster (Pavlík et al. 2018). This, in turn, has a fundamental impact
on the cluster evolution (Breen & Heggie 2013).

1.5.2 Black hole sub-systems in star clusters

In star clusters, BHs (and even more BBHs), are the most massive objects, and lose
energy to the other components as the cluster tends towards energy equipartition (see
Sect. 1.3.2). More specifically, the BH component eventually decouples from the bulk of
the cluster, and forms a dynamically independent sub-cluster, which is hotter, denser and
more compact than the rest of the cluster. Most importantly, the core of this sub-system
represents a dynamically active environment where BBHs can efficiently exchange energy
and momentum with the single BHs in the sub-system core (Breen & Heggie 2013). Since
most BBHs are hard binaries (BHs are among the most massive bodies in star clusters),
the net effect of dynamical interactions within the BH sub-system is to extract energy from
BBHs. In turn, this energy is conducted via two-body relaxation, and spreads throughout
the bulk of the cluster (Hénon 1961; Breen & Heggie 2013).

Since the presence of a BH sub-system provides an additional energy source for the
cluster, it accelerates its expansion and dissolution in the tidal field. Figure 1.9 shows
the impact of this BH sub-system on the global evolution of star clusters with different
tidal radii (Giersz et al. 2019). In particular, it highlights the comparison between two
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SN kick prescriptions: in the first, BHs receive the same kicks as NSs (see Sect. 1.5.1),
and are thus easily ejected during SN explosions; in the second a fallback mechanism
is implemented to reduce the SN kicks for BHs, resulting in a non-negligible retention
for these objects. Initially, all the models behave in a similar way, because the cluster
mass loss is due to stellar and binary evolutionary processes. When relaxation comes into
play and BHs start to segregate, the evolution of the cluster shows a dependency on the
strong energy generation by the BH sub-system. In particular, the high flow of escaping
stars decreases the cluster mass and, as a consequence, the escape velocity (eq. 1.5).
This, in turn, enhances the tidal stripping. The resulting high mass-loss rate removes the
cluster from dynamical equilibrium and produces, in the final stages of its life, an abrupt
dissolution (Giersz et al. 2019).

1.5.3 Dynamical ejections

During three-body encounters, the difference between the initial and final internal binary
energy is redistributed as kinetic energy between the single and binary star, due to mo-
mentum conservation. As a consequence, both the star and the binary undergo a recoil,
which is generally of the order of few km s−1, but can be up to several hundred km s−1.
The injected kinetic energy might thus be sufficiently high to eject the binary from the
core and even from the cluster itself, decreasing the number of BHs within the system.
This process, called dynamical ejection, causes the decrease of the BH number shown in
Fig. 1.9.

After a BBH forms, it hardens because of dynamical interactions, thus undergoing
more and more energetic encounters. When the BBH is tight enough, the energy trans-
ferred by the successive three-body encounters will produce a recoil that is high enough
to eject it from the cluster. The semi-major axis at which this happens can be estimated
by equating the dynamical recoil to the cluster escape velocity (Miller & Hamilton 2002):

aej =
2

5

⟨m⟩2
(m1 +m2)3

Gm1m2

v2esc
. (1.21)

When all BHs have the same mass, a BBH ejects on average ∼ 4 BHs before ejecting
itself (Goodman 1984).

The rate of dynamical ejections has a deep impact on the cluster evolution, as well as
on its present-day observed properties. In dense clusters, most BHs are generally ejected
before the cluster dissolves, because of their higher interaction rates. Clusters with lower
initial densities have instead longer relaxation times, resulting in fewer BH ejections, while
tidal stripping of stars (see Sect. 1.3.5) is more efficient. In principle, this could even lead
to the formation of star clusters made entirely of BHs (the so-called dark star clusters,
Banerjee & Kroupa 2011). Simple two-component models (Breen & Heggie 2013) suggest
that in idealized single-mass star clusters that fill their tidal radius, there exists a critical
BH mass fraction fBH ≈ 10% at which the mass-loss rate of stars and BHs is the same and
fBH remains constant. For higher (lower) fBH, stellar mass is lost at a higher (lower) rate
by tidal stripping than BH mass is lost by ejections from the core. N−body simulations
with a realistic mass function suggest that this fraction may be lower, fBH ≈ 2.5% (Gieles
et al. 2021).

When the BBH and/or the BH intruder are ejected, they become field objects and
cannot participate in the dynamics of the star cluster anymore. Thus, not only does the
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Figure 1.9: Evolution of the fraction of cluster bound mass (top panel) and of the number
of BHs (bottom panel) as a function of time for different rt (eq. 1.1) and for SN natal kicks
mass fallback set to ON (solid lines) or OFF (dashed lines). Different colours represent
different initial tidal radii rt = 30 pc (black), rt = 60 pc (red) line, rt = 120 pc (blue).
Figure from Giersz et al. (2019).
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ejected BBH stop hardening, but also the ejected intruder loses any chance of entering a
new binary by dynamical exchange (see Sect. 1.6). This, in turn, affects the dynamical
production of BBH mergers, as described in detail in Sect. 1.6.

1.6 Star clusters as gravitational-wave factories

During a three-body encounter between a hard BBH and an intruder, the BBH semi-
major axis generally shrinks because a fraction of its internal energy is redistributed
among the interacting bodies (Heggie 1975). Shrinking the semi-major axis of compact
object binaries can dramatically shorten their coalescence time for GW emission, which
scales as tGW ∝ a4 (see eq. 1.17). Thus, the hardening process may be sufficiently
effective to harden a BH binary till it enters the regime where GW emission is efficient:
a BH binary which is initially too loose to merge may then become a GW source thanks
to dynamical hardening.

Another important consequence of three-body encounters is that they tend to excite
the orbital eccentricity of binaries. In fact, the probability distribution of binary eccentric-
ities after in dynamically active environments tends to a thermal distribution, N(e) ∝ e
(Heggie 1975), and can be even super-thermal in the case of low angular momentum
encounters (Ginat & Perets 2023). The orbital eccentricity has an even greater impact
on the GW coalescence timescale, because, for eccentricities close to 1, the coalescence
timescale shortens as tGW ∝ (1 − e2)7/2 (see eq. 1.17). Although the formation of high-
eccentric BBHs is one of the most peculiar imprints of dynamical encounters, by the time
they reach the LVK band, GW emission circularizes them. Therefore, most binaries are
not expected to have any residual eccentricity at > 10 Hz (Abbott et al. 2016a). Only
binaries with an extreme eccentricity (e0 > 0.999) can retain some eccentricity at 10 Hz,
but their coalescence time will be extremely small (∼ days).

1.6.1 Exchanges

Dynamical exchanges are three-body encounters during which one of the binary members
swaps with the initial single body. Exchanges lead to the formation of new BBHs. This
is a very important difference between BHs in the field and in star clusters: a BH which
forms as a single object in the field has negligible chances to become member of a binary
system, while a single BH in the core of a star cluster has good chances of becoming
member of a binary by exchanges (Mapelli 2021).

Statistically, exchanges are expected to produce many more BBHs than they can
destroy. As shown in Fig. 1.10, the probability for an intruder to replace one of the
members of a binary is ≈ 0 if the intruder is less massive than both binary members,
while it suddenly jumps to ≈ 1 if the intruder is more massive than one of the members
of the binary (Hills & Fullerton 1980). Since BHs are among the most massive bodies in a
star cluster, they are very efficient in acquiring companions through dynamical exchanges
(Ziosi et al. 2014). BBHs formed through dynamical exchange will have some distinctive
features with respect to those formed through the isolated formation channels.

1. As a consequence of the tendency to acquire massive companions, BBHs formed by
exchanges will be (on average) more massive than the isolated ones.
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Figure 1.10: Exchange probability, defined as the fraction of post-encounter binaries
containing the initial single star, as a function of the mass of the intruder. Figure from
Hills & Fullerton (1980).

2. Dynamically-assembled binaries should not have any correlation between the orien-
tation of the BHs spins. We expect that an isolated binary in which the secondary
becomes a BH by direct collapse results in a BBHs with aligned spins (i.e. the
spins of the two BHs have the same orientation, which is approximately the same
as the orbital angular momentum direction of the binary), because tidal evolution
and mass transfer in a binary tend to synchronise the spins (Hurley et al. 2002).
For dynamically-formed BBHs (through exchange) we expect misaligned, or even
nearly isotropic spins, because any original spin alignment is completely reset by
three-body encounters (Mapelli 2021).

1.6.2 Star–star collisions

Dynamical interactions within star clusters provide a channel to produce BHs in the pair-
instability (PI) mass gap (Sect. 1.4.4). In particular, two mechanisms can lead to the
formation of BHs between 60M⊙ and 120M⊙: star–star collisions and hierarchical mergers.

Direct collisions of stars in dense stellar environments, can lead to large masses, thus
filling the PI mass gap (Spera et al. 2019; Di Carlo et al. 2020a). In particular, if a
massive star with a well-developed helium core merges with a non-evolved companion (a
main sequence or an Hertzsprung-gap star), it might give birth to an evolved star with
an over-sized hydrogen envelope. If the helium core remains below ∼ 30M⊙ and the
star collapses to a BH before growing a much larger core and before losing a significant
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fraction of its envelope. This scenario, represented in Fig. 1.11, has demonstrated to
explain the formation of BHs in the pair-instability mass gap in detailed stellar evolution
models (Spera et al. 2019; Renzo et al. 2020; Costa et al. 2022; Ballone et al. 2022).

If such a BH forms from a stellar merger form in the field, it remains a single object
and cannot produce any BBH mergers. In contrast, if it forms in a dense stellar cluster,
it might capture a new companion through a dynamical exchange, possibly becoming a
BBH and, then, producing a BBH merger (Di Carlo et al. 2019, 2020a). In Chap. 4, I
will describe in detail the formation of BHs in the PI mass gap in YSCs, where the short
relaxation times trigger dynamical interactions and direct collisions between stars when
they have not evolved into BHs yet.

1.6.3 Hierarchical mergers

In star clusters, stellar-origin BHs can undergo repeated mergers with other BHs, thus
building up to form more massive ones (Miller & Hamilton 2002; Fishbach et al. 2017;
Gerosa & Berti 2017; Doctor et al. 2020): this scenario is referred to as hierarchical merger
scenario (see Gerosa & Fishbach 2021 for a recent review on this topic).

The hierarchical assembly of BHs is a complex process, because it involves a com-
plex interplay between the properties of the BBH population (mass ratios, spins) and the
structure and evolution of the host cluster (escape velocity, central density). In particu-
lar, what mainly hampers the formation of hierarchical merger chains is the relativistic
kick that the merger remnant receives at birth (e.g., Fitchett 1983; Favata et al. 2004;
Campanelli et al. 2007; Lousto & Zlochower 2011). When two BH merge, asymmetric
dissipation of linear momentum via GWs imparts a recoil (or "kick") to the post-merger
remnant. These merger recoils range from 0 (for the case of highly symmetric configura-
tions) to ∼ 5000 km s−1, depending on the BBH mass ratio and on the spins of the two
BHs. In order to produce hierarchical mergers, the escape speed of the host cluster needs
to be larger than the typical kick imparted to the BH remnant. Due to their high escape
velocity (vesc ≳ 100 km s−1, NSCs are more likely to retain BBH merger remnants than
other star clusters (e.g., Antonini & Rasio 2016a; Arca Sedda & Benacquista 2019; Arca
Sedda et al. 2020), and to lead to the production of hierarchical mergers, as shown in Fig.
1.12. The BH growth can become substantial enough to fill the PI mass gap, and even to
lead to the formation of intermediate-mass BHs (IMBHs) (Antonini et al. 2019; Mapelli
et al. 2021a).

The process of hierarchical mergers involves a large number of parameters for both the
compact objects’ populations and the stellar clusters. SN kicks have an impact on the BH
retention fraction (see Sect. 1.5.1). Also, both spins and mass ratios play a fundamental
role in determining the magnitude of the relativistic kicks. Furthermore, the cluster mass,
density (and thus escape velocity) and metallicity affect the hardening and the dynamical
ejection of BBHs. Exploring this huge parameter space is not feasible by means hybrid
Monte-Carlo and/or N-body codes. To overcome this difficulty, a number of semi-analytic
codes has been developed, to investigate hierarchical mergers, by probing the parameter
space including BBH masses, spins, delay times, orbital eccentricities, and star cluster
properties, e.g. cBHBd (Antonini et al. 2019; Antonini & Gieles 2020b; Antonini et al.
2022), Fastcluster (Mapelli et al. 2021a, 2022), B-POP (Arca Sedda et al. 2021), and
Rapster (Kritos et al. 2022b,a).
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Figure 1.11: Column mass density maps of a edge-on collision between a core helium
burning star and a main sequence star, from the beginning to 10 days of evolution. As the
two stars move on their radial orbit, the secondary star enters the much larger envelope of
the primary, and gets disrupted when reaching the inner parts of the core helium burning
star after about 1 day of evolution. At the end of the simulation, the stellar remnant
relaxes to a much larger envelope, generated by the inflation of the outer layers of the
primary star. Figure adapted from Ballone et al. (2022).
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Figure 1.12: Upper panel: maximum merger remnant mass in each generation as a func-
tion of the generation number (where 1 means first generation). Lower panel: Fraction of
mergers belonging to a given generation with respect to all BBH mergers in the considered
model as a function of the generation number. Figure from Mapelli et al. (2021a).
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Thesis outline

This thesis is organized as follows:
In Chapter 2, I introduce a new approach to generate many sets of

initial conditions from a given set of star masses, positions and veloci-
ties from a hydro-dynamical simulation, which incorporates the observed
complexity of star forming regions. This method is based on a hierarchi-
cal clustering algorithm that learns a tree representation of the cluster
phase-space. This tree encodes instructions to generate new realizations,
by simply modifying the initial branches of the tree (encoding the rela-
tions between the biggest sub-clumps), while preserving the character-
istics of the small scale structure responsible for most of the dynamical
evolution. I investigate the mass spectrum, velocity distribution, and
fractal scheme of the newly-generated clusters. Finally, I compare their
evolution at different scales to that of the original cluster.

In Chapter 3, I address the impact of original binary populations on
the evolution of young star clusters. In particular, I generate initial con-
ditions from hydro-dynamical simulations of collapsing molecular clouds.
Then, I introduce a new algorithm to associate a primordial binary star
population to these stellar distributions. Through this study, I quantify
how original binaries affect the global evolution of the cluster. Also, I
investigate how star clusters produce dynamical populations of binaries,
depending on their global properties. Finally, I compare the evolution of
star clusters generated through hydro-dynamical simulations to that of
spherical, more idealized models.

In Chapter 4, I explore how dynamical interactions within young star
clusters affect the properties of BBH mergers. In particular, I compare
the populations of BBH in two different star cluster families: low-mass
(∼ 500− 800M⊙) and relatively high-mass star clusters (≥ 5000M⊙). I
explore how the tidal disruption of the cluster quenches the formation
and hardening of BBHs. Also, I investigate how star-star collisions, which
are triggered by the high initial densities of young star clusters, can lead
to the formation of BHs in the PI mass gap and of IMBHs.

In Chapter 5, I explore the process of hierarchical mergers in globular
clusters. To do this in a realistic framework, I implemented the relevant
processes that drive the evolution of globular clusters, namely stellar evo-
lution, two-body relaxation, and tidal stripping from the host galaxy, in
the semi-analytic code fastcluster. I investigate how these processes
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quench the production of hierarchical mergers. Also, I study how the BH
spins and the BBH orbital angular momentum build up to increase the
BH spins at higher generations.

In Chapter 6, I look for signatures of the presence of BHs the Hyades
cluster. More specifically, I compare a large suite on N−body models,
run with the precise intent to reproduce the present-day state of the
Hyades, to accurate radial density profiles obtained from Gaia. I study
how the presence of BHs affect the radial distribution of visible stars, with
particular attention to the most massive ones, which cannot segregate at
the cluster center because of the presence of a heavier component. Also,
I study the period distribution of dynamically formed BH-star binaries.
Finally, I look for stars with potential BH companions through large Gaia
astrometric and spectroscopic errors.

Finally, Chapter 7 summarizes my conclusions and outlook.
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Chapter 2

Hierarchical generative models for star
clusters from hydro-dynamical
simulations

Based on:
Torniamenti S., Pasquato M., Di Cintio, P., Ballone, A., Iorio G., Artale M. C., Mapelli
M.,
“Hierarchical generative models for star clusters from hydrodynamical simulations”,
2022, MNRAS 510, 2097

Abstract

Star formation in molecular clouds is clumpy, hierarchically subclustered. Frac-
tal structure also emerges in hydro-dynamical simulations of star-forming clouds.
Simulating the formation of realistic star clusters with hydro-dynamical simulations
is a computational challenge, considering that only the statistically averaged results
of large batches of simulations are reliable, due to the chaotic nature of the gravita-
tional N -body problem. While large sets of initial conditions for N -body runs can
be produced by hydro-dynamical simulations of star formation, this is prohibitively
expensive in terms of computational time. Here we address this issue by introducing
a new technique for generating many sets of new initial conditions from a given set
of star masses, positions and velocities from a hydro-dynamical simulation. We use
hierarchical clustering in phase space to inform a tree representation of the spatial
and kinematic relations between stars. This constitutes the basis for the random
generation of new sets of stars which share the clustering structure of the original
ones but have individually different masses, positions, and velocities. We apply this
method to the output of a number of hydro-dynamical star-formation simulations,
comparing the generated initial conditions to the original ones through a series of
quantitative tests, including comparing mass and velocity distributions and fractal
dimension. Finally, we evolve both the original and the generated star clusters using
a direct N -body code, obtaining a qualitatively similar evolution.

keywords: ISM: kinematics and dynamics – open clusters and associations: general
– ISM: clouds – methods: numerical – methods: statistical
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2.1 Introduction

2.1 Introduction

A large fraction of star formation happens in clusters (Lada & Lada 2003; but see also the
recent findings by Reina-Campos et al. 2019a and Ward et al. 2020), which are are clumpy
and hierarchically sub-structured (Larson 1995; Bastian et al. 2009; Dib & Henning 2019).
Young star clusters often show signatures of fractality (Cartwright 2009; Kuhn et al. 2019),
complex motions between sub-clumps (Cantat-Gaudin et al. 2019), and possibly rotation
(Hénault-Brunet et al. 2012). In addition, the early expulsion of gas due to stellar winds
and supernova explosions brings young clusters out of dynamical equilibrium, causing
an expansion phase (Hills 1980; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007;
Pfalzner 2009). The comprehension of the early evolution of star clusters is of fundamental
importance to interpret the later phases of their life. For example, Corsaro et al. (2017)
have shown that the rotation signature from the parent molecular cloud persists in the
alignment of stellar spins in some open clusters, even today. Rotation in young and open
star clusters is confirmed by numerical simulations (e.g., Lee & Hennebelle 2016; Mapelli
2017; Ballone et al. 2020). Also, observations of globular clusters show signatures of
rotation, sometimes with significant dynamical effects (Bianchini et al. 2013; Fabricius
et al. 2014; Ferraro et al. 2018; Kamann et al. 2018; Dalessandro et al. 2021) that may
have been imprinted in the first phases of their evolution.

Gravitational N−body simulations are a key tool to model the early star cluster
evolution, but they often start from rather idealized initial conditions, sampled from
equilibrium models, such as Plummer (1911) or King (1966) models. Even though more
sophisticated models are available (e.g., Lynden-Bell 1962; Michie & Bodenheimer 1963;
Prendergast & Tomer 1970; Wilson 1975; Bertin & Stiavelli 1984; Lupton & Gunn 1987;
Trenti & Bertin 2005; An & Evans 2006; Varri & Bertin 2012; Gieles & Zocchi 2015;
Daniel et al. 2017; Claydon et al. 2019), these were developed with the goal of describing
the current, quasi-equilibrium state of star clusters, and do not perform well in describing
the early and out-of-equilibrium structure of the clusters. Thus, by design, they bear
little resemblance to observed original conditions in embedded clusters.

A seemingly obvious but computationally demanding way to generate realistic initial
conditions for star clusters is to run suites of hydro-dynamical simulations, coupled with
appropriate recipes for handling star formation and other sub-grid physics (e.g., Klessen &
Burkert 2000; Bonnell et al. 2003; Bate 2009b; Federrath 2013; Krumholz et al. 2012; Dale
et al. 2015; Fujii & Portegies Zwart 2016; Geen et al. 2016; Seifried et al. 2017; Zamora-
Avilés et al. 2019; Lee & Hennebelle 2019; Wall et al. 2019). Despite these efforts, large
sets of simulations including all the relevant physics are at present hard to come by,
notwithstanding ever-advancing hardware capabilities. This is compounded by the fact
that N−body simulations, even direct-summation ones, eventually diverge from the true
solution of the N−body problem for most initial conditions due to numerical errors and
the chaotic nature of the problem (e.g. see Goodman et al. 1993; Hemsendorf & Merritt
2002; Kandrup & Sideris 2003; Boekholt & Portegies Zwart 2015; Di Cintio & Casetti
2019, 2020; Manwadkar et al. 2020; Wang & Hernandez 2021 and references therein),
with the consequence that only ensemble-averaged results are considered reliable within
the current consensus. To obtain such averages, multiple N−body runs are needed, each
with its own initial conditions.

The usage of clustering algorithms is widespread in cosmology, where different meth-
ods have been developed to identify over-dense gravitationally bound systems (i.e., groups
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or dark matter haloes and subhaloes). There is a huge variety of group-finding algo-
rithms, which perform clustering in different ways. For example, density-peak locators
and spherical over-density finders identify density peaks in the particle distribution and
draw spheres of decreasing density around them, down to a density threshold (see, e.g.,
Press & Schechter 1974). Direct particle collectors, instead, connect particles based on
a linking length criterion. Such scheme is the basis of the friend-of-friends prescription,
which is used in the context of halo-finding in cosmological simulations (Davis et al. 1985)
and in galaxy clusters from observational data (Murphy et al. 2012; see also Feng & Modi
2017 and references therein). Other group finders extend these two approaches to include
particle velocity information (see, e.g., Diemand et al. 2006; Maciejewski et al. 2009).

Here, we adopt a hierarchical clustering algorithm. As opposed to the aforementioned
algorithms, hierarchical clustering does not rely on the definition of a density threshold or
a length scale, but is provided with a definition of similarity between groups. In particular,
it proceeds in a hierarchical way, by connecting the most similar pair of clusters, starting
from individual instances, until a certain number of groups is reached. This hierarchical
construction allows not only to identify over-densities in the distribution of stars, but also
to draw information about the structure of star systems at different scales. New stellar
clusters can thus be obtained by modifying selected nodes in the hierarchical structure,
depending on the properties we want to preserve or modify.

Our generative model is meant to produce new large-scale distributions of sink par-
ticles, by preserving the properties that make them so realistic, such as their complex
fractal structure. The goodness of our method is evaluated by comparing the fractal
structure of the new realizations to that of the original cluster. Also, we check if the
new velocity distributions are consistent with the original distribution. Finally, we run
N -body simulations of the newly generated clusters to test if they are consistent with the
stochastic fluctuations of the original simulations.

The paper is organized as follows. In Section 2.2, we recap the properties of the hydro-
dynamical simulations we used to generate our original initial condition sets; Section 2.3
presents our approach for generating new realizations, while in Section 2.4 we describe
our results and run various checks to compare the generated realizations to the original
simulations. In Section 2.5, we discuss and draw conclusions.

2.2 Smoothed-particle hydro-dynamical simulations

2.2.1 Initial conditions and simulation set-up

As a starting point for this work, we used the sink particles from 10 smoothed-particle
hydro-dynamics (herafter SPH) simulations of molecular clouds performed by Ballone
et al. (2020) using the gasoline2 code (Wadsley et al. 2004, 2017). In the following, we
may refer to these sink particles as ‘stars’ for convenience.

The initial conditions of the SPH simulations are spherical molecular clouds with
total gaseous mass in the range 104 ≤Mmc/M⊙ ≤ 105 (see the last column of Table 2.1),
uniform temperature T0 = 10 K and uniform density ρ0 = 2.5×102 cm−3. All runs have a
fixed number of initial SPH particles equal to 107, corresponding to a gas mass resolution
of 10−3 to 10−2 M⊙, depending on the cloud mass. Stars form during the simulation by
means of a sink particle algorithm based on the same prescriptions as Bate et al. (1995).
The spatial resolution (kernel size) of the simulation can get as small as 0.001 pc in the
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densest regions.
In order to induce a non-isotropic evolution, the SPH gas particles are initially given

a turbulent, divergence-free, Gaussian random velocity field with a different random seed
for each simulation of the set, following a Burgers (1948) velocity power-law spectrum
with index −4 (Bate 2009a). With respect to the classical Kolmogorov (1941) power
spectrum (with index −11/3), the Burgers power spectrum better matches turbulence in
compressive flows, where shocks are present (Federrath 2013). The clouds are in an initial
marginally bound state, so that their initial virial ratio αvir ≡ 2K/|W | = 2, where K and
W are the gas kinetic and potential energy, respectively.

During the hydro-dynamical simulation, the gas equation of state has been set to be
adiabatic, while radiative cooling by dust has been modeled as in Boley (2009) and Boley
et al. (2010). The amount of energy lost by cooling was calculated through the divergence
of the heat flux

∇ · Fcool = −(36π)1/3σ(T 4 − T 4
irr)

s(∆τ + 1/∆τ)
. (2.1)

In the Equation above, σ is the Stefan-Boltzmann constant, T the gas temperature, Tirr
the irradiation temperature, s = (m/ρ)1/3 and ∆τ = s k ρ, where m and ρ are the gas
particle mass and density and k is the local opacity. The dust-to-gas ratio has been fixed to
a constant value for each different dust species. For k, the adopted Planck and Rosseland
dust opacities are taken from D’Alessio et al. (2001). The irradiation temperature, which
represents the minimum temperature allowed by the dust that acts as a thermostat for
the gas, is set to Tirr = 10K.

No stellar feedback was included in this set of simulations, and we simply decided
to assume that our clusters are the result of instantaneous gas removal at 3 Myr after
the beginning of the hydro-dynamical simulation to roughly simulate the effect of the
first supernova explosions. Indeed, Dale et al. (2015) have shown that the pre-supernova
gas removal is expected to play a minor effect on the survival and dynamics of stellar
clusters and we also checked that at 3 Myr the gas accounts for a small fraction of the
mass where most of the stellar mass is residing. Furthermore, at 3 Myr all the clouds
converted about 30-40% of their gas mass into sink particles, in agreement with previous
hydro-dynamical simulations showing that stellar feedback should lead to a maximum
star formation efficiency of about this amount (e.g., Vázquez-Semadeni et al. 2010; Dale
et al. 2015; Gavagnin et al. 2017; Li et al. 2019). For more details on such choices, we
refer the reader to Ballone et al. (2020).

2.2.2 Structural properties of the SPH simulations

Independently of the specific initial value of Mmc, our SPH simulations present a clumpy
structure with Ns ≈ 3× 103 stars1, organized in a maximum of Nc = 9 main sub-clumps
for m7e4 to a minimum of 2 for m4e4. Sub-clumps are identified heuristically as groups of
neighbouring stars containing more than 0.05Ns, which self potential energy exceeds that
of the rest of the system. Figure 2.1 shows the x− y, y − z and z − x projections of the
stars position on the three coordinate planes for the system m1e4, with their masses m

1The approximately constant value of Ns follows from the fact that the star formation efficiency is
roughly independent of Mmc (see Table 1 in Ballone et al. 2020). The star formation efficiency is indeed
rather dictated by the physical processes involved in the simulations, which, in all cases, start from the
same values of cloud temperature and density.
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Figure 2.1: From left to right, projections in the x− y, y− z and z − x planes of the end
state of the m1e4 simulation. The colour map marks the mass of the individual stars in
units of M⊙.

shown in colour. We find a rather prominent primordial mass segregation, with heavier
stars typically well within the central regions of the main clumps and lighter stars at
larger distances from the geometric centres of such subsystems. All systems are above the
virial condition, with αvir ranging from 1.19 for the m1e4 case, to 1.69 for m6e4.

In order to quantify the properties of the end states of the SPH simulations, we
have evaluated their distributions of inter-particle distances f(d), mass spectra f(m), and
velocity distributions f(v). Figure 2.2 shows these distributions for the sink particles of the
simulations m1e4, m3e4, m5e4, m7e4 and m9e4. The distribution of inter-particle distances
shows a quite complex structure with several slope changes. The clumpy structure of
the particles’ spatial distribution gives rise to several peaks in f(d), corresponding to the
distances between the clumps themselves. For the specific case of m1e4, the peaks are
located roughly at 0.1, 0.45, 1.75 and 3 pc (as highlighted by the vertical dotted lines),
that can be identified as the distances between the approximate centres of the main clumps
of the particles shown in Fig. 2.1.

The mass spectra of sink particles approximately follow the same power-law structure
between a low-mass and a high-mass cut-off. The differences in the lower mass limit
are due to the different mass resolution of the hydro-dynamical simulations, which are
initialized with different total masses but the same number of particles, as explained in
Sect. 2.2.1. At higher masses, where the physical processes involved in the simulation
become the dominant factor in shaping the mass function, all the spectra recover the same
slope. We have fitted the numerically recovered mass spectra with the bona-fide function:

f(m) =
C

(m2 +m2
∗)
γ/2
, (2.2)

where C is a normalization constant, m∗ is a scale mass, that for the explored systems is
always in the range between 0.8 and 4 M⊙, while exponent γ ranges from ≈ 1.8 to ≈ 2.3.

The velocity distributions f(v) do not show a relevant dependence on the specific
initial value of Mmc, as shown in the right hand panel of Fig. 2.2. Qualitatively, the
velocity distribution is well described by a Maxwell-Boltzmann distribution from v = 0
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Table 2.1: Properties of the end states of the SPH simulations of Ballone et al. (2020).

Name Ns Nc αvir γ Msink [M⊙] Mmc [M⊙]
m1e4 2523 6 1.19 2.30 4.22× 103 104

m2e4 2571 4 1.32 2.12 6.69× 103 2× 104

m3e4 2825 5 1.48 2.20 1.03× 104 3× 104

m4e4 2868 2 1.47 2.17 1.44× 104 4× 104

m5e4 2231 4 1.47 1.80 1.41× 104 5× 104

m6e4 3054 5 1.69 2.15 2.04× 104 6× 104

m7e4 4214 9 1.50 2.20 3.15× 104 7× 104

m8e4 2945 6 1.60 1.86 2.83× 104 8× 104

m9e4 3161 4 1.52 1.90 3.05× 104 9× 104

m1e5 3944 6 1.46 2.20 3.80× 104 105

After the name of each simulation (Col. 1), we report the number of stars generated (Col. 2), the
number of macroscopic subclumps (Col. 3), the virial ratio (αvir ≡ 2K/|W |, Col. 4), the γ coefficient of
the mass-spectrum fitting function of (Eq. 2.2, Col. 5), the total mass of the stars (Col. 6), and the
mass of the parent molecular cloud (Col. 7).

to 5 km s−1 (value corresponding to the peak of f(v)) and then shows a v−3 power-law
trend. The properties of the SPH simulations are summarized in Table 2.1.

2.3 Methods
In the following, we describe our new procedure to build a generative model of star cluster
initial conditions. In principle, a generative model’s goal is to learn a representation of
an intractable distribution given an usually finite number of samples. The generator
typically maps from a latent domain on which a simple distribution is defined, such as a
multivariate Gaussian on Rn, to the complex data domain (e.g. Ruthotto & Haber 2021).
Recently, most of the interest in generative models is driven by deep learning approaches,
such as generative adversarial networks (Goodfellow et al. 2014). However, in principle,
much simpler models such as hidden Markov models (Rabiner & Juang 1986; Eddy 2004)
or grammars (e.g., Chomsky 1959; Jelinek et al. 1992; Beaumont & Stepney 2009) meet
the definition of generative model in the broader sense defined above. The latter have
proved useful in the description and generation of objects displaying fractal structure,
as in the case of Lindenmayer systems applied to plant growth (Lindenmayer 1968a,b;
Prusinkiewicz & Hanan 2013).

Our generative approach focuses on reproducing the complex fractal structure of em-
bedded star clusters from hydro-dynamical simulations (see, e.g., Fig 4 in Ballone et al.
2020) by capturing the relations between sub-clusters at different scales through a hier-
archical clustering algorithm. This will eventually allow us to generate new realizations
by modifying their macro structure, i.e. the relations between large sub-clusters. The
parameters that characterize the relevant properties of these clumps and their relations
can be treated as the latent domain of our generative model.

We proceed in two steps. First, we use a hierarchical clustering algorithm to identify
clumps of stars at different scales in the phase space of the original hydro-dynamical
simulation output. The clumps are organized by the algorithm into a hierarchical tree T ,
where the root node contains the whole set of stars and each subsequent node represents a
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Figure 2.2: Distributions of inter-particle distances f(d) (left-hand panel), mass spectra
f(m) (middle panel), and velocity distribution f(v) (right-hand panel) for the sink par-
ticles taken from the simulations m1e4, m3e4, m5e4, m7e4, m9e4. The vertical dotted lines
in the left-hand panel mark the position of the main peaks of f(d), corresponding to the
distances between the main sub-clusters, for the m1e4 case. The thin dotted line in the
right-hand panel marks the v−3 power-law trend of the velocity distributions.

two-way split with each branch being a clump of stars, down to the leaf nodes representing
individual stars. For each node Ti, we describe the relevant physical properties of the
cluster in terms of the distance vector between the centres of mass of the clumps li, their
relative velocity vector ui, and the mass ratio between the two clumps. To describe how
the mass is split at each node we refer to qi, defined as the ratio between the lightest of
the two resulting groups and the total mass of the node. With this definition, mass ratios
fall between 0 (maximally unequal split) and 0.5 (equal-mass split). The description of
the star clusters in terms of the hierarchical clustering algorithm is given in Sect. 2.3.2,
but its goal in short is to capture structure as a function of scale, similarly to what was
done in, e.g., Elmegreen et al. (2006) by applying smoothing kernels of different sizes.

Second, we generate a new realization of particle positions and velocities by placing
clumps of stars (and sub-clumps down to the individual stars) in phase space. To build a
new realization of total mass M (details in Sect. 2.3.3), we start with one particle at rest
in the origin of our coordinate system, initially containing the total mass of the cluster
M . Then, we iteratively split it into new particles and place them, at each step i, at a
distance li from each other, moving with relative velocity ui. The relevant variables li, ui,
and the relevant mass ratio qi are taken from the tree T except for the first step(s), which
are drawn from a tree T ′ built on a different simulation. While this does not guarantee
that the outcome will be described by a tree with statistical properties that match those
of T , it is at least heuristically convincing in the case of very hierarchical distributions.
Moreover, we will check ex post that the realizations generated in this way have a set of
desirable properties with respect to the original cluster. The details about the generative
procedure are given in Sect. 2.3.3.

2.3.1 Hierarchical clustering

Hierarchical clustering algorithms arrange data into a tree-like structure representing
nested groups, capturing clustering structure at different scales. In particular, we use an
agglomerative clustering algorithm (see the chapter on agnes in Kaufman & Rousseeuw
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Figure 2.3: First nodes from the trunk in the hierarchical tree for the m1e4 simulation,
obtained by considering different linkages: single (first column), average (second column),
complete (third column), and Ward (last column) linkage. The panels in the first row
show the first node of the tree, that splits the sink particles of the simulation into two
groups (blue and orange). In the second node, the blue group is split further into two
subgroups (blue and green, panels in the second row). The third node splits the blue
group into the blue and the red groups (panels in the lower row).

1990). This means that the tree-like hierarchy of clusters is built from the bottom up: the
algorithm starts from individual points, and merges the most similar ones into clusters
until some stopping criterion is satisfied (e.g., until only a specified number of clusters are
left). This way of proceeding can be thought as drawing a tree with a branch for every
pair of clusters that merge2. A dendrogram can be used to display the resulting tree
structure, with leaf nodes corresponding to individual points and the root corresponding
to the whole data set. We refer the interested reader to Pasquato & Milone (2019) for
an illustration of this and other clustering algorithms in an astronomical context. Here,
we selected this algorithm because it is well suited for studying the complex structure of
the hydro-dynamical simulations described in Section 2.2, since it is informative on very
different scales and it can capture clusters (and sub-clusters) of various sizes. We use the
implementation offered by the scikit-learn library (Pedregosa et al. 2011)3.

2The procedure of drawing a hierarchy of merging sub-structures may recall the merger tree history,
which is used in cosmology to track the assembly of sub-structures across time (see, e.g., Rodriguez-
Gomez et al. 2015). Agglomerative clustering algorithms, however, do not imply any evolution in time,
but use the tree-like structure to identify groups of instances at different scales.

3The details about the implementation of the algorithm can be found at this link.
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Figure 2.4: Distribution of the mass of the lightest of the two resulting groups at any given
split, in units of the parent group. The top left panel shows the distribution calculated
for all nodes in the learned tree. The top right panel shows the distribution for the top
1/3 of the nodes from the root (big clumps), the bottom left for the middle 1/3 of the
nodes (intermediate-size clumps), and the bottom right for the lower 1/3 of the nodes
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Linkage

Moving towards the root of the tree, an agglomerative clustering algorithm merges at
each node either two groups with each other or a lone point into a group. This process
is based on a notion of (dis)similarity between groups which may be defined in multiple
ways, or linkages. We considered four different linkages and evaluated their performance
in clustering the sink particle spatial distribution.

• The single linkage merges the two clusters that have the minimum distance between
any points in the two groups:

∆AB := min (li∈A, j∈B), (2.3)

where i and j represent sink particles belonging to group A and B, respectively, and
li,j is the distance between two such particles.

• The average linkage merges the two clusters that have the smallest average distance
between all their points:

∆AB := mean(li∈A, j∈B). (2.4)

• The complete linkage (also known as maximum linkage) merges the two clusters
that have the smallest maximum distance between their points:

∆AB := max (li∈A, j∈B). (2.5)

• Ward’s linkage merges two clusters such that the variance within all clusters in-
creases the least. This often leads to clusters that are relatively equally sized.
Ward’s linkage is defined as follows:

∆2
AB =

∑
i∈A∪B

l2i,cA∪B
−
(∑
i∈A

l2i,cA +
∑
i∈B

l2i,cB

)
, (2.6)

where the index i denotes the generic i−th particle and cA, cB, and cA∪B denote
the centroids of sets A, B, and A ∪B respectively. Equation 2.6 corresponds to the
increase in variance with respect to the relevant centroids as groups A and B are
merged. Merging groups decreases the number of centroids by one, so variance is
bound to increase, but using Ward’s linkage results in cluster mergers that minimize
its increase at each step.

Figure 2.3 shows how the choice of the linkage affects the structure of the first three
nodes of the tree of m1e4. The single linkage approach leads to a single, big sub-clump,
separated from a few isolated stars. In fact, following this prescription, two blobs that
just touch in one point are considered similar and get merged into one pretty quickly,
even if their centres-of-mass are far from each other. In contrast, single isolated stars
are merged only in the final branches. The average and complete linkage perform poorly
as well, likely because their merging criterion is too simple to fit the complex structure
of the hydro-dynamical clusters. Finally, Ward’s linkage performs well in describing the
large scale structure of the cluster, as it correctly identifies the main clumps and is thus
informative about the structure of the cluster. For this reason, hereafter we will consider
only Ward’s linkage.
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Figure 2.5: Same as Figure 2.4 but for the distribution of the distances (scaled by their
variance) between the centres-of-mass of two resulting groups at any given split of the
agglomerative clustering hierarchical tree.

42



2.3 Methods

2.3.2 Application of hierarchical clustering to stellar clusters

We applied agglomerative clustering to the stellar clusters from hydro-dynamical simu-
lations introduced in Section 2.2. The trees are built by relying on euclidean distance
between sink particles in the phase space as a measure of dissimilarity, so that particles
sharing both similar positions and similar velocities tend to be grouped together. Before
applying the algorithm, we scaled the positions and the velocities by their standard de-
viations. This step or some such is necessary so that the result of our clustering does not
depend on the arbitrary choice of the unit of measurement of time.

The right column of Fig. 2.3 shows the groups of sink particles corresponding to the
first two nodes of the learned tree (starting from the root). The first node splits the
sinks into two big chunks, and the second node splits off a smaller clump from one of
these4. Our choice of using Ward linkage results in the splitting off of the most massive
sub-clumps in the first branches of the tree, leading to an overall balanced tree. The first
splitting thus gives information about the distribution of the sub-clumps at large scales
and, moving towards the leaves of the trees, sub-clusters are split in smaller and smaller
sub-clumps, as desired for our task.

Figure 2.4 shows the mass ratios between sub-clumps branching off at different depths
within the tree. The distribution of mass ratios is not particularly affected by the tree
depth. This is expected if the structure of the sink particle distribution is scale invari-
ant, as moving down the tree (towards the leaves) probes smaller scales by construction.
Additionally, Fig. 2.4 shows that the distribution is similar across different simulations,
spanning a range of total mass of an order of magnitude. To assess if the mass ratios can
be considered as drawn from the same distribution (after properly rescaling the mass), we
performed pairwise Kolmogorov–Smirnov tests. Despite multiple testing we never obtain
a p-value below 10−2, so we have no reason to suspect that the distributions are different.
Also, we performed the same test on the sub-distributions shown in Fig. 2.4 separately.
Our test always obtains p-values above 10−1, with the only exception for the comparison
between the middle nodes of m1e4 and m9e4, where p-value = 10−1.2. This result suggests
that, despite some statistical fluctuations, the splitting in mass is performed in the same
way at different scales for all the simulations.

Similar information on the scaling behavior of our simulations can be extracted from
Figures 2.5 and 2.6, where we show the distribution of the distances between the clumps
(l = |l|) and that of their relative velocities (u = |u|). In particular, the positions of
the maxima of the distributions shift towards lower values by moving from the top to
the bottom nodes, confirming that the tree is considering smaller and smaller scales.
Also in this case, all the simulations show very similar distributions at each level for
both the distances and the relative velocities. The distribution of the angles between
the relative velocity and the distance, θ = arccos (l · u (l u)−1), is shown in Figure 2.7.
This distribution appears flat except for a rise at cos θ ≈ 1 which corresponds to relative
velocity parallel to the separation vector between clumps, which is expected in a super-
virial cluster undergoing overall expansion.

Relevant physical information can be drawn by considering the relation between quan-
tities of the same node in the agglomerative clustering tree. Figure 2.8 shows the relation
between the distance of the sub-clumps and their relative velocity, for each node. The

4Even as we describe the tree from the root up (writing occasionally in terms of splits/splitting)
agglomerative methods build the tree from the leaves, i.e. the individual sink particles.
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Figure 2.6: Same as Figure 2.4 but for the distribution of the relative velocities (scaled
by their variance) between the centres-of-mass of two resulting groups at any given split
of the agglomerative clustering hierarchical tree.
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the relative velocity and the distance of the centres-of-mass of two resulting groups at any
given split of the agglomerative clustering hierarchical tree.
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main sub-clumps, that correspond to the nodes closest to the root, show a direct propor-
tionality between these two quantities, possibly due to rigid rotation. In contrast, on the
smallest scales, the single particle relative velocity shows a tendency to decline with the
square root of their distance, as would happen for two clumps (or even two individual
stars) orbiting one another under the influence of each other’s monopole potential. Inter-
estingly, all relative motions between clumps take place between the rigid and Keplerian
extremes.

10 3 10 2 10 1 100 101

l

10 1

100

101

u

u l
u l 1/2

100 101 102 103
Nnode

Figure 2.8: Scatter plot of the relative velocity between the centres-of-mass of two dif-
ferent sub-clumps corresponding to a given node in the agglomerative clustering tree as
a function of their distance. The colour gradient maps the depth of the node (from the
root, in blue, to the leaves, in yellow) within the hierarchical tree, Nnode. The superim-
posed lines represent two limit slopes corresponding to rigid rotation (blue) and Keplerian
motion (orange).

2.3.3 Generating new realizations

As explained in Section 2.3.2, the application of the agglomerative clustering algorithm
to stellar clusters allows us to inform a tree T encoding their hierarchical structure. Each
node of the three Ti is associated to the relevant properties li, ui, and qi, which quantify
the relations between the sub-clumps corresponding to the branches departing from the
node. Thus the tree essentially encodes instructions to generate a new star cluster, as it
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Figure 2.9: Left-hand panel: distribution of inter-particle distances f(d) for the sink
particles taken from the m1e4 simulation (thick magenta line) and three distributions of
new generations obtained by replacing the first 1 (blue), 2 (green, hatched area) and 3
(yellow) nodes, corresponding to k = 2, 3, and 4 in the notation used above. The shaded
area encloses the distribution of the new generations, and the solid line is the median
of the distribution. Right-hand panel: average number of neighbours Nr around a star,
within a sphere with radius rneigh, for different values of rneigh. Lines and colors are the
same as in the left-hand panel. The black dotted lines represent the trend expected for
distributions with a uniform fractal dimension, for β = 1.6, 2, and 3 .

can be traversed from the top, iteratively splitting an intial particle until the leaf level is
reached, where individual stars have been produced. In our case, the goal is to change the
cluster at the global structure level -nearest to the trunk of the tree-, thus creating different
sub-clumps configurations while preserving the small scale properties of the sub-clumps
(such as their fractal structure). We thus take the quantities li, ui, and qi associated to
the nodes Ti for i < k and replace them with the quantities l′i, u′

i, and q′i associated to the
nodes T ′

i of another tree T ′, learned from a different set of sink particles. This grafting
procedure represents a way to combine the large scale properties of one simulation with
the small scale properties of another. For the results presented in Sect. 2.4, these nodes
are sampled randomly from other simulations.

The generation procedure is implemented as follows. First, we consider a particle with
a mass M1 equal to the total mass of the cluster considered, placed at the centre of mass
of the cluster. The particle is first split into two particles of masses M11 and M12 such
that M11 +M12 = M1 and min(M11,M12)/M1 = q′1. The positions and velocities of the
new particles are assigned such that their centre of mass is at rest in the origin of the
system, their distance vector is l′i, and their relative velocity u′

1 . This splitting procedure
is then repeated until a cluster with the same number of particles as the reference one is
obtained. At each step, the particle-to-split is chosen by considering the same order of
splitting as the original reference tree. This procedure may at times result in very low
mass particles. We remove these planet-sized objects with a cutoff at the minimum mass
of the original stars on which T was learned.
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Grafting depth

In the procedure described above, the choice of the grafting depth k determines how
different the new realizations are from the original system. A low value of k produces
generations that are very similar to the original one at all scales. In contrast, when k is
high, also the small scales are modified substantially. In our case, we want to generate new
clusters that are similar to the original one but, at the same time, cannot be considered as
its copies. We evaluated how the choice of the grafting depth affects the spatial structure
of the new generations. In particular, we considered the distributions of distances and the
fractal dimensions obtained by generating sets of one hundred new realizations for m1e4, at
different values of k. The left panel of Fig. 2.9 shows the general shape of the distributions
of inter-particle distances. Predictably, the realizations obtained by modifying just one
node match the original distribution better than those that change two or three nodes,
and present the smallest spread. The peaks correspond to sub-clumps of sinks, that are
formed in different numbers and sizes in each realization. At small distances, the new
realizations recover the the general trend of the original distribution, as meant for our
method. For the case with k = 1, this happens at about 1 pc, meaning that only the
very large scales (the distance between the main sub-clumps) are modified. By increasing
k, also the smaller scales are altered, and the original shape is recovered later. This
suggests that very few changes are sufficient to produce generations that can be defined
as different from the original cluster. The distributions for k ≤ 3 are consistent with the
original simulation throughout the range of distances.
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f(u
)

Original
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Figure 2.10: Distribution of velocities f(u) for the sink particles taken from the m1e4
simulation (orange line) and for a distribution of new generations obtained by considering
k = 3 (blue). The shaded area encloses the distribution of the new generations, and the
solid line is the median of the distribution.
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Figure 2.11: Projections in y − z of the 5 least massive star clusters (left), and of three
different generated clusters per each. The colour map marks the mass of the individual
stars.
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Figure 2.12: Same as Fig. 2.11, but for the 5 most massive star clusters.
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In the right-hand panel of Fig. 2.9, we have computed the fractal dimension by means
of the average number of neighbours of the stars within a given distance, following Ballone
et al. (2020). The distribution of neighbours of m1e4 is not described by a single power law
of non integer index β, as one would expect in a simple fractal structure, but presents two
slope changes at around ≈ 10−1 and ≈ 2 pc (see also Ballone et al. 2020). To guide the
eye, the three dotted lines mark the theoretical distance distributions in the case of a pure
fractal distribution with Nr ∝ rβneigh, for β = 1.6, 2, and 3. The generated distributions
match the general trend and the changes in the slope of the original simulation very well,
showing that our method captured the underlying structure of the particle distribution in
the 3D space at all scales. Like for the inter-particle distance distribution, the choice of
k = 2 produces only minimal differences from the original m1e4 profile. In the following,
we will focus on generations with k = 3, which allows to produce a distribution of clusters
that are distinguishable but still consistent with the original one at all scales.

Figure 2.10 shows the distribution of velocities for the new generations obtained by
setting k = 3, as compared to the original sink particle trend. The median of the new
generations matches the original distribution at all velocities, both on the low-velocity tail,
where the Maxwell-Boltzmann trend seems to be preserved, and on the sharper power-law
trend at high velocities. At very low values (u < 1 km/s), the very low number of stars
causes large fluctuations in the distribution of new generations, but their median trend is
still well consistent with the original one.

2.4 Results
Figure 2.11 and 2.12 show the spatial distributions of the original cluster and of three
new generations per each, for all the sink particle distributions of our sample. The new
generations are qualitatively indistinguishable from the original clusters (e.g., see also
Torniamenti 2022).

2.4.1 Properties of the newly generated systems

In this Section, we discuss the properties of the systems generated using our procedure
starting from the simulation m1e4, which presents the highest resolution. Figure 2.13
shows the spatial distributions of five new generations obtained with the method described
in Section 2.3.3, compared to the original one. The new generations show a strong sub-
structured configuration, with a different number of clumps, depending on the single
realization, which has drawn branches from different simulations. Also, a strong degree of
mass segregation is still present in the single sub-clumps, as highlighted by the colour cod-
ing. This primordial mass segregation in the individual realizations qualitatively matches
the one present in the original cluster.

In Fig. 2.14, we compare the mass distribution of m1e4 to those of the new generations.
In this case, our method leaves the slope of the mass function largely unaltered for most
of the mass spectrum. At the boundaries of the mass spectrum, some discrepancies are
present. This is due to the fact that the change in the first nodes may split up a relatively
small particle more times than in the original cluster, and leaves more massive particles
less split. This explains the higher number of particles at the boundaries of the mass
spectrum with respect to the original one. The sharper cut-off at m ≈ 10−1M⊙ is due to
the fact that all masses below this threshold are systematically removed. In general, the
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Figure 2.13: x − y projection of the m1e4 system (top left panel, see also Fig. 2.1) and
five different new generations. The colour code marks the different masses of the sink
particles and their new generations.

fit with Eq. 2.2 is rather good, yielding values of γ around 2.3, reminiscent of a Salpeter
(1955) slope.

Due to the redistribution of particle positions, velocities and masses in the generation
process, the value of the total virial ratio αvir may be significantly altered (with respect,
in this case, to the value of 1.19 for the m1e4 case) ranging from a minimum of 0.46
to a maximum of 2.08. Clearly, the future dynamical evolution depends heavily on the
virial ratio, which, in turn, is heavily affected by the left tail of the particle pairwise
distances. There is indeed a margin of variation in short distances between realizations,
as shown in Fig. 2.9. However, the shortest distances in any stellar system essentially
correspond to binary-star semiaxes. Our hydro-dynamical simulations were not designed
to faithfully reproduce an observational initial mass function (Ballone et al. 2021) nor to
capture binary properties. In Torniamenti et al. (2021), we introduce a realistic binary
distribution with a separate procedure. While binary binding energy is a large fraction
of the total binding energy in many realistic scenarios, the time scale over which this
energy is exchanged with the cluster at large is much longer than the dissolution time
for the typical system under consideration: hard binaries are dynamically inert in the
short term. To check that this is the source of the observed virial ratio mismatch, we
have operated two diagnostics. First of all, we have recomputed the virial ratio αvir for
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Figure 2.14: Distribution of masses f(m) for the sink particles taken from the m1e4
simulation (orange line) and for a distribution of new generations obtained by considering
k = 3 (blue). The shaded area encloses the distribution of the new generations, and the
solid line is the median of the distribution.

Ns times excluding each time a different particle. This gives us a robust way to quantify
the virial ratio, as the spread in the resulting distribution will be driven by instances in
which a member of a very close binary was excluded. In all cases, the value of αvir of the
original system lies well inside the distribution of αvir obtained by removing one particle
at time from a given generation.

Second, we have also computed the αvir by excluding the binding energy of stars with
separation under a varying threshold between one tenth and one half of the average inter-
particle distance. We found that the large variations in the value of αvir observed for the
generated clusters is essentially due to the different distributions of tightly bound particles
in the generated clusters and the parent sink particle system produced by our SPH simula-
tions. Thus, different values of the virial ratio will result in a similar dynamical evolution
on the time scales of interest, as shown below by evolving our realization through direct
N−body simulations. We list the nominal virial coefficients of our generated realizations
together with other properties in Table 2.2.

2.4.2 N -body simulations

Our method aims to generate large samples of initial conditions for N−body simulations.
To test that our realizations are indeed suitable for this use, we evolve via direct N -body
simulations the three original clusters (m1e4, m3e4 and m6e4) and 10 different generated
clusters per each of the three original ones. Finding that the evolution of the generated
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Figure 2.15: Projection in the x − y plane of the evolution of the original cluster (m1e4,
upper panel) and four different generated clusters (lower panels) as a function of time.
The clusters are shown at their initial configuration (first column) and at three different
time steps: 1 Myr (second column), 5 Myr (third column) and 10 Myr (last column). The
colour code marks the different masses of the sink particles and their generations.
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clusters is neither identical nor dramatically different with respect to the original cluster
is one of the main test-beds of our method. In fact, our method can be successfully used
only if the new clusters evolve in a similar way as the original one, but are sufficiently
different not to be an exact copy. Ideally, the generated clusters should behave as different
random realizations of the same underlying physical distributions.

We ran our simulations with the direct N -body code nbody6++gpu (Wang et al.
2015). Thanks to a neighbour scheme (Nitadori & Aarseth 2012), nbody6++gpu ef-
ficiently handles the collisional force contributions at short time scales as well as those
at longer time intervals, to which all the members in the system contribute. The force
integration also includes a solar neighbourhood-like static external tidal field (Wang et al.
2016). Stellar evolution is not included in our runs, for the sake of simplicity and to make
the comparison with the original cluster more straightforward. We evolved the clusters
for 10 Myr.

Table 2.2 shows the main initial properties of the generated clusters for which we ran
the N−body simulations. Figure 2.15 shows the projection in the x − y plane of the
original m1e4 cluster and of four generations, at different times. The global evolution of
the new generated clusters shows a variety of configurations depending on the different
distribution of mass. In some cases, distinct sub-clumps are present at t > 1Myr and
tidally interact with each other before eventually merging. In the case of m1e4g4, two
distinct sub-clumps are still present at 10Myr.

A more quantitative description of the global evolution of the clusters can be given in
terms of the evolution of the 10% and 50% Lagrangian radii (r10 and r50), centred in the
centre of density5. Figure 2.16 shows the evolution of r10 and r50 for the original clusters
and the generated ones. In all the cases, the original evolution lies within the limits of
the distribution of the generated clusters, which shows a large spread. This spread is
consistent with the large stochastic fluctuations that we expect in the evolution of such
low-mass clusters (see, e.g., Torniamenti et al. 2021).

2.5 Discussion and Conclusions

We introduced a new method for generating a number of new realizations from a given
set of initial conditions (particle masses, positions and velocities) produced by hydro-
dynamical simulations. The realizations are built to display a different large scale struc-
ture, but share similar properties at smaller scales, preserving in particular the fractal
dimension of the original simulation. We have shown that they can be used as initial
conditions for N−body simulations, producing a comparable evolution to the original
cluster. This suggests that our method is suitable for drawing the initial conditions of a
large set of N− body simulations at an infinitesimal fraction of the computational cost
of generating initial conditions from a hydro-dynamical simulation.

Our novel approach relies on informing a hierarchical clustering structure (represented
as a tree) from the original initial condition data through agglomerative clustering. This
is later turned into new realizations by modifying the initial branches of the tree (en-
coding the relations between the biggest sub-clumps in the simulation). This results in
realizations with different macroscopic properties from the original one (e.g., the number

5The local density around each star was calculated as the density of the sphere that includes the 300
closest stars.
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Table 2.2: Properties of the generated clusters starting from m1e4, m3e4 and m6e4.

Name Ns Nc αvir γ Msink [M⊙]
m1e4g1 2006 6 0.60 2.3 4.20× 103

m1e4g2 2509 6 1.41 2.3 4.20× 103

m1e4g3 2512 6 1.57 2.3 4.20× 103

m1e4g4 1998 8 0.60 2.3 4.20× 103

m1e4g5 2512 5 1.68 2.3 4.20× 103

m1e4g6 2491 7 1.50 2.3 4.20× 103

m1e4g7 2081 8 0.48 2.3 4.20× 103

m1e4g8 2512 9 1.81 2.3 4.20× 103

m1e4g9 2196 4 0.46 2.3 4.20× 103

m1e4g10 2496 7 1.57 2.3 4.20× 103

m3e4g1 2765 5 0.80 2.2 1.03× 104

m3e4g2 2805 7 1.39 2.2 1.03× 104

m3e4g3 2811 5 1.16 2.2 1.03× 104

m3e4g4 2719 5 1.20 2.2 1.03× 104

m3e4g5 2747 7 1.48 2.2 1.03× 104

m3e4g6 2774 6 1.40 2.2 1.03× 104

m3e4g7 2750 6 1.46 2.2 1.03× 104

m3e4g8 2770 7 1.13 2.2 1.03× 104

m3e4g9 2628 7 0.94 2.2 1.03× 104

m3e4g10 2764 6 0.94 2.2 1.03× 104

m6e4g1 2747 7 1.65 2.1 2.04× 104

m6e4g2 2823 7 1.80 2.1 2.04× 104

m6e4g3 2900 5 1.82 2.1 2.04× 104

m6e4g4 2718 6 1.66 2.1 2.04× 104

m6e4g5 2967 6 1.75 2.1 2.04× 104

m6e4g6 2752 5 1.30 2.1 2.04× 104

m6e4g7 2998 6 1.55 2.1 2.04× 104

m6e4g8 2833 6 1.36 2.1 2.04× 104

m6e4g9 3001 6 1.82 2.1 2.04× 104

m6e4g10 3015 5 1.82 2.1 2.04× 104

After the name of the generated cluster (Col. 1), we report the total number of stars (Col. 2), the number
of macroscopic sub-clumps (Col. 3), the virial ratio (Col. 4), the γ coefficient of the mass-spectrum fitting
function (Eq. 2.2, Col. 5), and the total mass of the stars (Col. 6).
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Figure 2.16: Evolution of the 10% Lagrangian radius (left) and the 50% Lagrangian
radius (right) for the original sink particles and for ten different generations of m1e4
(upper panel), m3e4 (middle panel), and m6e4 (lower panel). The orange line represents
the original sink particle system, and the blue lines are the generated clusters.
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of big clumps and their distances), while approximately preserving the characteristics of
small scale structure responsible for most of dynamical evolution (e.g., the distribution
of pairwise distances between individual stars). In principle, this scheme is very flexible,
allowing to choose how much of the large scale structure we control directly, by choosing
the number of initial branches we modify.

The realizations we obtained with our method qualitatively resemble the original sim-
ulation when visualized in three-dimensional space. In our case, the original distribution
of stars was generated by hydro-dynamical simulations of embedded clusters, so our new
realizations appear qualitatively indistinguishable from the output of these simulations.
The mass spectrum and the velocity distribution are also very similar to the original sim-
ulation. The distribution of the number of neighbours as a function of distance reveals
that the fractal dimension of our realizations and that of the original simulation match
on different scales (they both show a similar complex fractal pattern).

Finally, we ran direct N−body simulations of a sample of generated initial conditions
for three different original star clusters. In all the cases, the new generations show a
realistic evolution on all scales, bracketing that of the original one, as shown by the
trend of the 10% and 50% Lagrangian radii. Our analysis suggests that this method
is a promising way to generate new mass and phase-space distributions from existing
hydro-dynamical simulations, thus increasing our sample of initial conditions for N−body
simulations. The speedup in computation obtained by our new method is tremendous:
generating initial conditions from hydro-dynamical simulations requires about 1.5 × 105

core hours per simulation, while our procedure takes about 10 core seconds to train the
initial tree distribution and generate a new realization.
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Chapter 3

The impact of binaries on the evolution
of star clusters from turbulent
molecular clouds

Based on:
Torniamenti S., Ballone A., Mapelli M., Gaspari N., Di Carlo U. N.,
Rastello S., Giacobbo, N., Pasquato M.,
“The impact of binaries on the evolution of star clusters from turbulent molecular
clouds”, 2021, MNRAS 507, 2253

Abstract

Most of massive stars form in binary or higher-order systems in clumpy, sub-
structured clusters. In the very first phases of their life, these stars are expected to
interact with the surrounding environment, before being released to the field when
the cluster is tidally disrupted by the host galaxy. We present a set of N−body sim-
ulations to describe the evolution of young stellar clusters and their binary content
in the first phases of their life. To do this, we have developed a method that gener-
ates realistic initial conditions for binary stars in star clusters from hydrodynamical
simulations. We considered different evolutionary cases to quantify the impact of
binary and stellar evolution. Also, we compared their evolution to that of King
and fractal models with different length scales. Our results indicate that the global
expansion of the cluster from hydrodynamical simulations is initially balanced by
the sub-clump motion and accelerates when a monolithic shape is reached, as in a
post-core collapse evolution. Compared to the spherical initial conditions, the ratio
of the 50% to 10% Lagrangian radius shows a very distinctive trend, explained by
the formation of a hot core of massive stars triggered by the high initial degree of
mass segregation. As for its binary population, each cluster shows a self-regulating
behaviour by creating interacting binaries with binding energies of the order of its
energy scales. Also, in the absence of original binaries, the dynamically-formed bina-
ries display a mass-dependent binary fraction, spontaneously reproducing the trend
of the observed binary fraction.

keywords: stars: kinematics and dynamics – galaxies: star clusters: general –
open clusters and associations: general – binaries: general – methods: numerical
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Binary stars in young stellar clusters

3.1 Introduction

Most stars form as members of clusters or associations, that show a clumpy spatial dis-
tribution and may also contain sub-structures (Larson 1995). Understanding the early
evolution of these star-forming complexes is of fundamental importance for the compre-
hension of the properties of young (< 100 Myr) and open clusters (Portegies Zwart et al.
2010), where the presence of sub-structures and fractality is observed (e.g., Cartwright &
Whitworth 2004; Sánchez & Alfaro 2009; Parker & Meyer 2012; Kuhn et al. 2019). Also,
these systems are characterized by complex internal kinematics, such as sub-clump relative
motions and mergers, cluster expansion, gas dispersal (Kuhn et al. 2019; Cantat-Gaudin
et al. 2019) and rotation (Hénault-Brunet et al. 2012). In particular, gas dispersal due to
stellar winds and supernova explosions drives the cluster out of dynamical equilibrium,
leading to an expansion phase, where most stars become unbound and disperse into the
field (Hills 1980; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007; Pfalzner 2009).
Some of these natal properties might even survive the successive evolution of the stellar
system and leave an imprint on the observed properties of older, relaxed stellar clusters
(e.g., they may contribute to the signatures of rotation visible in some globular clusters,
van Leeuwen et al. 2000; Pancino et al. 2007; Bianchini et al. 2013; Kamann et al. 2018;
Bianchini et al. 2018).

In the first phases of their life, the dynamical evolution of young stellar clusters is
deeply influenced by their stellar and binary content, and vice versa. In particular, a large
fraction of the most massive stars is part of binary and higher order systems (Moe & Di
Stefano 2017) that can actively exchange energy and angular momentum with the host
environment, thanks to the very high density (ρ ∼ 104 M⊙ pc−3) of the cluster core. On
the one hand, original binary stars (i.e., stars that form as members of a binary system)1

contain a large reservoir of internal energy, that can be transferred to other stars in the
host star cluster, through three- and multi-body encounters (e.g., Heggie 1975; Hut 1983),
preventing or reversing the gravothermal collapse of the core of the cluster (Tanikawa
& Fukushige 2009; Chatterjee et al. 2013; Fujii & Portegies Zwart 2014). On the other
hand, the global evolution of the cluster affects the properties of the binary population: for
example, core collapse leads to the formation of new binary systems and to their dynamical
hardening (Spitzer & Hart 1971a). On top of this, binary stars are also affected by mass
transfer, common envelope, supernova kicks, tides and other evolutionary processes (e.g.,
Hut 1981; Webbink 1984; Portegies Zwart & Verbunt 1996; Hurley et al. 2002). All these
processes are crucial for the ejection of stars from their host star cluster (e.g., runaway
stars, Fujii & Portegies Zwart 2011, Oh et al. 2015; Oh & Kroupa 2016), and for the
formation of intermediate-mass black holes (e.g., Ebisuzaki et al. 2001; Portegies Zwart
et al. 2004; Giersz et al. 2015; Mapelli 2016). Finally, the interplay between dynamical
interactions and binary evolution (Banerjee et al. 2010; Ziosi et al. 2014; Banerjee 2017;
Fujii et al. 2017; Di Carlo et al. 2020b; Kumamoto et al. 2019; Antonini & Gieles 2020b;
Trani et al. 2021) can explain the properties of the binary compact objects observed
through gravitational wave detection by LIGO and Virgo (Abbott et al. 2021b,c).

Direct N−body simulations are usually adopted to integrate the collisional dynamics
of gas-free star clusters, where length-scales of different orders of magnitude, from bi-

1Although the binaries present in the initial conditions of a star cluster simulation are often referred
to as primordial, here we use the term original to avoid any confusion with primordial stars or black
holes formed in the early Universe.
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nary separations of some solar radii to several parsecs, need to be included. However,
studies of this type often lack realistic initial conditions. For example, state-of-the-art
direct N−body simulations of star clusters include realistic stellar mass functions and
stellar evolution, but most of them start from spherical idealized models, such as Plum-
mer (1911) or King (1966) models. In some recent work, fractal initial conditions were
adopted to mimic the initial clumpiness of star clusters (e.g., Goodwin & Whitworth
2004; Schmeja & Klessen 2006; Allison et al. 2010; Küpper et al. 2011; Parker et al. 2014;
Di Carlo et al. 2019; Daffern-Powell & Parker 2020). Few studies tried to re-simulate
with a direct N−body code the initial conditions obtained from hydrodynamical simula-
tions of star cluster formation (Moeckel & Bate 2010; Moeckel et al. 2012; Parker & Dale
2013; Fujii & Portegies Zwart 2015), but most of them do not include stellar evolution
or realistic stellar mass functions or original binary populations. A recent attempt to
couple magneto-hydrodynamics and direct N−body star cluster formation simulations,
also considering the presence of original binaries, was proposed by Cournoyer-Cloutier
et al. (2021), who developed a binary generation algorithm consistent with observations
of mass dependent binary fraction and distributions of orbital periods, mass ratios and
eccentricities. They found that binary systems formed dynamically do not have the same
properties as the original ones, and that the presence of an initial population of binaries
affects the properties of dynamically-formed binaries. An adequate modelling of the origi-
nal binary population is thus necessary for a realistic description of dynamical interactions
in the early stages of star clusters’ evolution.

Recently, Ballone et al. (2020) and Ballone et al. (2021) proposed a new approach to
connect hydrodynamics and stellar dynamics that can be used to provide more realistic
initial conditions for direct N−body simulations. This approach includes a number of
the ingredients necessary to self-consistently study this problem: realistic phase-space
distributions of stars, drawn from sink particle distributions of collapsing molecular clouds,
and a realistic stellar mass function, which is fundamental to assess the impact of stellar
evolution. This method is based on the assumption that the gas, in which the newly
formed star cluster is embedded, is almost instantaneously expelled by feedback (radiation,
winds and, most of all, supernova explosions) from the young most massive stars (e.g.,
Vázquez-Semadeni et al. 2010; Dale et al. 2014; Pfalzner et al. 2014; Gavagnin et al. 2017;
Chevance et al. 2020b,a; Pang et al. 2020). From that moment on, the evolution of the
newly born stellar system is mainly driven by gravitational dynamics. A necessary step
towards a more realistic description is the insertion of binary stars in the original stellar
population.

The aim of this paper is to offer a realistic, self-consistent description of the complex
interplay between binaries and their host cluster in the first phases of a cluster’s life
after gas expulsion, by considering the effects of dynamics, stellar and binary evolution
simultaneously. To do this, we insert original binaries in the joining/splitting method
introduced in Ballone et al. (2021), to generate realistic initial conditions for N−body
simulations starting from hydrodynamical simulations. Also, we study the evolution of
the phase-space distribution of star clusters generated by hydrodynamical simulations and
we compare it to other, more idealized, initial configurations.

This paper is organized as follows. In Sect. 3.2, we introduce our binary generation
algorithm. Section 3.3 describes the initial conditions of the N−body simulations. In
Sect. 3.4, we report the results of the simulation of a stellar cluster under different evolu-
tionary conditions and compare it to other initial phase-space distributions. In Sect. 3.5,
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we discuss the peculiar aspects of the evolution of the stellar clusters from hydrodynamical
simulations. Finally, in Sect. 3.6 we report our conclusions.

3.2 Methods

3.2.1 Binary generation algorithm

We developed a new algorithm to generate a realistic initial mass function (IMF) and a
realistic population of original binaries, based on observations (Sana et al. 2012; Moe & Di
Stefano 2017). This algorithm can be easily coupled to different phase-space generation
codes to obtain a variety of initial conditions for N−body simulations. The method
consists of the following steps.

1. First, the algorithm randomly draws a population of stars from a Kroupa (2001)
IMF between 0.1 M⊙ and 150 M⊙, for an assigned value of the total mass of the
population.

2. The stars are paired up to each other in order to obtain a distribution of mass ratios
q = m2/m1 following Sana et al. (2012):

F(q) ∝ q−0.1, with q ∈ [0.1, 1]. (3.1)

The coupling is set to generate a binary fraction fbin = Nbin/(Nsing + Nbin), where
Nbin is the number of binary systems and Nsing is the number of single stars, which
depends on the mass of the primary star, following the observational results of Moe
& Di Stefano (2017). For simplicity’s sake, we do not include triple systems, but
we take into account their presence when evaluating the binary fraction by labeling
a certain number of single stars as third components of the existing binary systems
(following Moe & Di Stefano 2017). This results in a fraction of binaries counted
as triples (ftrip), and prevents from having an excessive number of binary systems
among the most massive stars. By this procedure, we obtain a distribution of
single stars and of binary particles. For this work, we assume the binary fraction
goes to zero in the mass range 0.1 − 0.8 M⊙: the observations indicate that the
percentage of binary stars in this mass range is low anyway (Moe & Di Stefano
2017), and including these low-mass binary stars would have dramatically increased
the computational cost of the simulations. The resulting binary fraction for stars
with mass m > 0.8M⊙ is 0.4.

3. The single and binary particles are assigned a phase-space distribution by coupling
the aforementioned algorithm to a phase-space distribution generator. For this work,
we considered two choices of the phase-space distribution generator. In the first case,
we coupled our algorithm with the joining/splitting procedure summarized in the
next sections and described in detail in Ballone et al. (2021). In the second case, the
phase-space distribution is created with the code McLuster (Küpper et al. 2011).

4. Finally, the binary particles are split into separate stars and their orbital period (P )
and eccentricity (e) distributions are generated following Sana et al. (2012):

F(P) ∝ P−0.55, with P = log10(P/days) ∈ [0.15, 5.5], (3.2)
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Figure 3.1: Properties of binary stars generated with the algorithm described in Sec-
tion 3.2.1. Upper panel: Kroupa (2001) IMF (left), mass ratio (centre) and eccentricity
(right) distributions, following Sana et al. (2012). Central panel: period distribution
(left) from Sana et al. (2012), the resulting semi-major axis distribution (centre), and
the eccentricity−period relation (right) from Moe & Di Stefano (2017). Lower panel:
fraction of binaries not counted as triples (fbin, left), fraction of binary stars counted
as triples (ftrip, centre) and the resulting binary fraction (fbin + ftrip, right). Red data
points labelled as M&DS: observations from Moe & Di Stefano (2017). Blue data points:
simulated binaries and triples from this work.
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and
F(e) ∝ e−0.45, with e ∈ [10−5, emax(P )], (3.3)

where, for a given orbital period, we set the upper limit of the eccentricity distribu-
tion emax(P ) according to eq. (3) of Moe & Di Stefano (2017):

emax(P ) = 1−
(

P

2 days

)−2/3

. (3.4)

The orbital properties of the binaries are then converted into positions and velocities
by considering an isotropic distribution for the orbital planes.

Figure 3.1 shows an example of the binary populations generated by means of this
algorithm. These initial conditions can be used to study the evolution of binary stars at
the early and later stages of their host stellar cluster’s life with a great variety of initial
configurations. In addition, the generation of initial conditions through this algorithm has
negligible computational cost. Finally, the described procedure is also suited to generate
initial conditions for population synthesis studies.

3.2.2 Hydrodynamical simulations

The star clusters studied in this work are obtained by applying our algorithm to the
output of the hydrodynamical simulations of turbulent molecular clouds presented in
Ballone et al. (2020) and Ballone et al. (2021). These hydrodynamical simulations are
performed with the smoothed-particle hydrodynamics code gasoline2 (Wadsley et al.
2004, 2017). For this work, we consider the hydrodynamical simulation initialized with
a total mass of 2 × 104 M⊙. The cloud has an initial uniform density of 250 cm−3,
an initial temperature of 10 K and it is in an initial marginally bound state, with a
virial ratio αvir ≡ 2T/|V | = 2, where T and V are the kinetic and potential energy,
respectively. The turbulence consists of a divergence-free Gaussian random velocity field,
following a Burgers (1948) power spectrum. The gas thermodynamics has been treated
by adopting an adiabatic equation of state with the addition of radiative cooling (Boley
2009). Stellar feedback was not included. Star formation is implemented through a sink
particle algorithm adopting the same criteria as in Bate et al. (1995).

At 3 Myr (for a discussion of this choice see Ballone et al. 2021), we instantaneously
remove all the gas from the simulations, mimicking the impact of a supernova explosion.
We apply the joining/splitting algorithm to the properties of the sink particles at 3 Myr,
as detailed in the next sub-section. We refer to Ballone et al. (2020) and Ballone et al.
(2021) for more details on the hydrodynamical simulations.

3.2.3 The joining/splitting algorithm

Ballone et al. (2021) introduced a new algorithm to generate stellar populations from sink
particles obtained through hydrodynamical simulations. This algorithm consists in either
joining or splitting the sink particle masses, which are affected by non-physical effects
(such as the simulation resolution and the adopted sink particle algorithm), so to obtain
a new, more realistic mass function of “children” stars. In this way the obtained stellar
population inherits the turbulent phase space distribution generated from hydrodynamical
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Table 3.1: Initial conditions of the N−body simulations.

Name Mtot r50 r10 αvir fbin
(M⊙) (pc) (pc)

Hydro 6.69× 103 1.70 0.06 1.53 0.06
King 6.69× 103 0.42 0.06 1.53 0.06
Loose Fract 6.69× 103 1.70 0.30 1.53 0.06
Dense Fract 6.69× 103 0.32 0.07 1.53 0.06

First column: name of the simulation set; second column: total mass Mtot; third column: half-mass
radius r50; fourth column: core radius r10; fifth column: virial ratio αvir; sixth column: binary fraction
fbin (if original binaries are present).

simulations, but features a realistic mass function. Here we summarize the main steps of
the joining/splitting process.

First, a population of stars with a chosen IMF is created, for an assigned value of their
total mass. The joining algorithm is used when a star is more massive than the most
massive sink particle. According to the joining algorithm, we select the densest region of
the sink particle distribution and merge the neighbour sinks until we obtain the mass of
the star. The position and the velocity of the star are assigned as the position and the
velocity of the centre of mass of the joined sinks. The joining algorithm tends to enforce
mass segregation in the central regions of the simulated star clusters.

The splitting branch of the algorithm, instead, is applied if a massive sink is more
massive than any left star. In this case, we subtract the mass of individual stars from
the massive sink particle, until a mass smaller than 0.1 M⊙ is left. The leftover mass
is reassigned to the closest sink, so to enforce local and total mass conservation. The
children stars of each sink particle are then distributed around the position and velocity
of their parent sink according to a virialized Plummer distribution (for this step we make
use of the new_plummer_model module in amuse, Pelupessy et al. 2013). In Ballone
et al. (2021), we considered a Plummer half-mass radius of 10−3 pc, that allowed a good
energy and virial ratio conservation for all the hydrodynamical simulations of the sample.
For this work, we prefer a Plummer half-mass radius of 10−2 pc because, for this specific
star cluster, this choice allows a better conservation of the total energy and a smaller
variation of the virial ratio.

The process of joining/splitting is cycled until either all the sink particles or the stars
are consumed.

3.2.4 Direct N -body simulations

For our direct N−body simulations, we made use of the direct summation N−body code
nbody6++gpu (Wang et al. 2015) coupled with the population synthesis code mobse
(Mapelli 2017; Giacobbo et al. 2018; Giacobbo & Mapelli 2018, 2019; Mapelli & Giacobbo
2018), an upgraded version of bse (Hurley et al. 2000, 2002). nbody6++gpu implements
a 4th-order Hermite integrator, individual block timesteps (Makino & Aarseth 1992) and a
Kustaanheimo-Stiefel regularization of close encounters and few-body subsystems (Stiefel
et al. 1965; Mikkola & Aarseth 1993). A neighbour scheme (Nitadori & Aarseth 2012)
is used to compute the force contributions at short time intervals (irregular force/time
steps), while at longer time intervals (regular force/time steps) all the members in the
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system contribute to the force evaluation. The irregular forces are evaluated using CPUs,
while the regular forces are computed on GPUs using the CUDA architecture. The force
integration includes a solar neighbourhood-like static external tidal field (Wang et al.
2016). In all our cases, we consider a star as an escaper if it reaches a distance from the
centre of density greater than four times the tidal radius of the cluster. The value chosen
for the removal distance avoids the presence of potential escapers in the calculation (Taka-
hashi & Baumgardt 2012; Moyano Loyola & Hurley 2013). mobse includes up-to-date
prescriptions for massive star winds (Giacobbo et al. 2018), for core-collapse supernova
explosions (Fryer et al. 2012; Giacobbo & Mapelli 2020) and for pair instability (Mapelli
et al. 2021b). nbody6++gpu and mobse are integrated, as described by Di Carlo et al.
(2019, 2020b).
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Figure 3.2: Left panel: initial spatial distribution of a realization of the Hydro stellar
cluster after the joining/splitting procedure. The coloured points are the stars that belong
to the main (orange) and secondary sub-clump (green). The grey points are the stars that
are catalogued as noise points by the dbscan algorithm. Right panel: relation between
the mass (MSC) and half-mass radius (rSC) of all the sub-clumps of the stellar clusters
presented in Ballone et al. (2021). The two sub-clumps of the Hydro stellar cluster, which
corresponds to SC2 in Ballone et al. (2021), are marked as blue stars. The grey region is
the interval defined by the Marks & Kroupa (2012) relation (grey solid line).

3.3 Initial conditions for N -body simulations

The initial conditions for the N−body simulations from hydrodynamical simulations
(hereafter labeled as Hydro) are obtained by combining the binary generation algorithm
described in Sect. 3.2.1 and the the joining/splitting procedure (Sect. 3.2.3). The main
properties of the initial conditions for the star cluster are reported in Table 3.1. The
system has a total mass of Mtot = 6687 M⊙, a half-mass radius (defined as the 50%
Lagrangian radius centred in the centre of density) r50 = 1.70 pc, and a core radius
(defined as the 10% Lagrangian radius centred in the centre of density) r10 = 0.06 pc.
After the instantaneous removal of the gas, the system is left in a super-virial state, with
αvir ≡ 2T/|V | = 1.53.
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Figure 3.3: Evolution of the cluster in the first Myr. The red solid line is the half-mass
radius, and the red dashed line is the core radius. The left-hand panel shows the initial
configuration of the system. The central panel shows the system at 0.5 Myr, when the
second sub-clump enters the sphere of the half-mass radius, making it decrease. The
right-hand panel shows the system at 1 Myr, when the two main sub-clumps are almost
merged and start expanding as a monolithic cluster. Every point is weighted with its local
density, calculated as the density of the sphere that includes the 500 closest stars.

In order to quantify the impact of different physical ingredients on the dynamical
evolution of a stellar cluster, we take into account four different evolutionary cases:

• Bin: evolution with original binary stars and without stellar evolution.

• Bin+SE : evolution with original binary stars and with stellar evolution. We as-
sumed solar metallicity (Z = 0.02, Anders & Grevesse 1989), in order to match the
young star clusters of the Milky Way (Portegies Zwart et al. 2010) and to maxi-
mize the difference with respect to the case without stellar evolution, because mass
loss by stellar winds is extremely high at solar metallicity (e.g., Vink et al. 2001;
Kudritzki 2002).

• NoBin: case with no original binary stars and no stellar evolution.

• NoBin+SE : case without original binary stars but with stellar evolution.

The comparison between the aforementioned four different cases allows us to have a
complete view of the impact of binaries and of stellar evolution on the dynamical evolution
of a cluster with a realistic phase-space distribution of stars.

For each case, we ran 10 simulations of different joining/splitting realizations in order
to filter out stochastic fluctuations.
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3.3.1 Comparison with other initial conditions

We compared the evolution of the Hydro initial conditions to that of other initial phase-
space distributions, which are commonly used in studies of star cluster dynamics. In order
to have a fair comparison, we set initial conditions that match the mass scale and either
the central length scale (r10) or the global length scale (r50) of our Hydro clusters. All the
initial conditions are generated by coupling our binary generation code to McLuster
(Küpper et al. 2011) as descibed in Section 3.2.1. We considered three cases:

• King : a King (1966) model matching the core radius of the hydrodynamical initial
conditions. To match the core radii of the two cases, we generated a King model
with a reduced half-mass radius, r50 = 0.25 pc, and a high value for the central
concentration, W0 = 9. The chosen value for the central concentration is typical
of clusters that are believed to have undergone core-collapse. For this reason a
post-core collapse evolution may be expected for both this case and for the central
regions of the hydrodynamical case.

• Loose Fract : a fractal sphere, with the same total mass and half-mass radius as the
Hydro case. For this case, we selected a fractal dimension D = 1.6, which gives a
good description of the sink particle distribution from which the Hydro clusters are
generated, as shown in Ballone et al. (2020).

• Dense Fract : a fractal sphere with the same mass and fractal dimension as the
previous case, but with a half-mass radius set according to the Marks & Kroupa
(2012) relation:

r50 = 0.10+0.07
−0.04 pc

(
Mtot

M⊙

)0.13±0.04

(3.5)

In this case, we have r50 ≈ 0.3 pc and r10 ≈ 0.07 pc. Interestingly, the core radius
results very similar to that of the Hydro initial conditions.

For all these initial conditions we set the same virial ratio as the Hydro case. The physical
properties for all the initial conditions are summarized in Table 3.1.

3.4 Results

3.4.1 Initial clumpiness of the stellar cluster

The initial space distribution of the Hydro simulation is clumpy and sub-structured, as
can be seen in Fig. 3.2. The stellar cluster mainly consists of two very dense main sub-
clumps and some minor and irregular clusters and filaments. We first defined the two
main sub-clumps by using the dbscan (Density-Based Spatial Clustering of Applications
with Noise) algorithm (Ester et al. 1996)2. This algorithm allows to group together points
in high-density regions: these are labeled as core points and are distinguished from points

2The implementation we referred to is that of the python library Scikit-learn
(sklearn.cluster.DBSCAN, Pedregosa et al. 2011). dbscan requires to define two parameters, ϵ
and minPts. The parameter minPts is the number of points within the reference distance ϵ needed
for a point to be considered as a core point. Otherwise, it is labeled as noise. For our case, we
set these parameters based on the half-mass radius of the cluster and on the total number of stars:
minPts = Ntot/10 and ϵ = r50/5.
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Figure 3.4: Early evolution of the 50% Lagrangian radius (r50, left-hand panel) and 10%
Lagrangian radius (r10, right-hand panel) for our set of N−body simulations. Differ-
ent lines represent different evolutionary configurations: with original binary stars and
without stellar evolution (Bin, black circles), with original binary stars and with stellar
evolution (Bin+SE, ochre triangles), without original binary stars and without stellar
evolution (NoBin, pink squares), without original binary stars but with stellar evolution
(NoBin+SE, cyan diamonds). For each case, the shaded areas define the range of varia-
tion (over the 10 different realizations of each model) of r50 (left) and r10 (right), while
solid lines and markers are the median values. The dashed black and pink lines are our
best fit according to eq. (3.6).

in low density areas, that are labeled as noise. The result of the clustering procedure
is shown in the top panel of Fig. 3.2: the algorithm manages to identify the two main
sub-clusters.

The main sub-clump has a mass of Msc ≈ 2304M⊙ (35% of the total mass) and a half-
mass radius of rSC = 0.15 pc, while the second sub-clump has a mass of Msc ≈ 1132M⊙
(17% of the total mass) and a half-mass radius of rSC = 0.16 pc. We checked if the
sub-clump masses and half-mass radii are consistent with eq. (3.5), that is the relation
between total mass and half-mass radius found in star-forming cloud cores by Marks &
Kroupa (2012). Recently, Fujii et al. (2021) found that this relation holds in N -body/SPH
simulations for embedded clusters with mass up to about 103M⊙ and it is preserved after
gas expulsion. In the lower panel of Fig. 3.2, we show the two sub-clumps together with
the other stellar clusters simulated by Ballone et al. (2021), that extend to higher masses
(between 103 and 104M⊙). As Fig. 3.2 shows, this sample is well consistent with eq. (3.5).

3.4.2 Global evolution

Early evolution (t < 1Myr)

Figure 3.3 shows the very first phase (t ≤ 1Myr) of the evolution for one representative
cluster. At t = 0 Myr, the centre of density is located well within the main clump, while
the second main sub-clump is out of the sphere defined by the half-mass radius. At t = 0.5

69



Binary stars in young stellar clusters

Myr, the cluster structure has significantly evolved. On the one hand, at small scales,
each sub-clump rapidly expands, as a consequence of the instantaneous gas removal, thus
lowering its local density. On the other hand, the two main sub-clumps get closer to
each other, thus balancing the small scale expansion on a larger scale. These competing
mechanisms characterize the first ≈ 1 Myr of the simulation.

At t = 1 Myr the cluster has nearly a monolithic shape. The half-mass radius is
slightly larger (r50 ≈ 2 pc) than at the beginning of the simulation (when r50 ≈ 1.7 pc),
while the core radius has grown much faster, as can be easily seen from Fig. 3.3. Typically,
a realization reaches a monolithic shape after 1 − 1.5 Myr (only in a limited number of
cases, this condition is fulfilled at about 2 − 2.5 Myr), after a short period in which the
two sub-clumps tidally interact without merging. The resultant cluster has an elongated
shape, as a consequence of the strong tidal interaction and the relative motion between
the sub-clumps.

The range of merger timescales is in agreement with the results by Fujii (2015), whose
simulations can simultaneously reproduce the properties of different types of young star
clusters, from massive and dense ones to open clusters and looser OB associations. In
this sense, when N -body simulations are exploited to study the early evolution of stellar
clusters, the timescale of sub-clump mergers is strongly dependent on the initial energetic
state of the molecular cloud, as can be inferred by comparing the results in Fujii & Porte-
gies Zwart (2015) and Ballone et al. (2021), who initialized their clouds in a marginally
bound state. On the observational side, this kind of mergers between sub-clumps seems to
be disfavoured to explain the formation of young star clusters like NGC 3603 (Banerjee &
Kroupa 2013;2015), whose observational properties require either a monolithic formation
channel or a prompt assembly in t < 1Myr. However, the results by Sabbi et al. (2012)
hint that ongoing mergers between very young clusters (such as R136 and the Northeast
Clump in NGC 2070) may also occur.

Cluster expansion

In order to consider both the initial clumpy evolution and the successive monolithic ex-
pansion, we evolved the clusters for 10 Myr. Figure 3.4 shows the expansion of the cluster,
described by r50 and r10, for all the four evolutionary cases. As a consequence of the mech-
anism described in Section 3.4.2, the half-mass radius initially grows, reaches a peak at
about 0.5 Myr, that is when the secondary sub-clump enters the sphere of the half-mass
radius of the main sub-clump, and then decreases. At 1 Myr, r50 reaches a minimum and
then grows monotonically. The expansion of r50 is no longer influenced by the relative
sub-clump motion, which at this time have merged or are very close to each other, but is
due to the small scale expansion that has now reached larger scales. In contrast, the core
radius grows rapidly since the very beginning of the simulation, because the sub-clump
motion has no effect at these small scales.

The impact of binary stars is evident in the second phase of the evolution of the
cluster, during the monolithic expansion. In fact, clusters with original binaries expand
faster after 1 Myr: at this point the large-scale interaction of the sub-clumps is no longer
present, and the density in the central region is still high enough (of the order of 103−104

M⊙ pc−3) to allow efficient interactions and energy exchange between the binary stars
and their surrounding environment. In the very first phases, instead, the faster expansion
due to binary stars is balanced by the global evolution of the sub-clumps.

As explained in Sect. 3.3.1, the central regions of the cluster are matched by a King
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Figure 3.5: Mass variation in the four evolutionary cases we considered. Lines and colours
are the same as in Fig. 3.4.

model with W0 = 9, that is typical of stellar clusters that are thought to have under-
gone core-collapse. We thus compared the monolithic expansion of the cluster with that
expected based on a self-similar evolution, at constant mass (Spitzer 1987):

r50 = B t2/3, (3.6)

where B is a proportionality constant. If the evolution of the cluster is a post-core collapse
expansion, the time increase of r50 should be roughly consistent with eq. (3.6). We
performed a fit to the median values of r50 from 1 Myr curves by using eq. (3.6). The
resulting best-fit curves are the dashed lines in the left-hand panel of Fig. 3.4. We show the
curves for the cases Bin and NoBin, where the lack of stellar evolution should avoid the
presence of additional effects (e.g., mass loss) and make the dynamical effect by binaries
more evident. The curves of both cases seem to be consistent with a post-core collapse
phase until 10 Myr.

Mass loss

As the cluster expands, stars get further away from its centre, until they are eventually
removed from the cluster dynamics by the tidal field of the host galaxy. This makes
the total mass of the stellar system decrease. The presence of binary stars enhances
the number of escaping stars, by powering a faster expansion. Also, close interactions
between binary stars and single (or other binary) stars may lead to the ejection of stars,
and possibly also of binary systems. In addition, stellar evolutionary processes (e.g. stellar
winds, supernova explosions) make single stars, and thus the cluster, lose mass.
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Figure 3.5 shows the variation of the total mass of the cluster (the details about
the removal of the escapers are given in Sect. 3.2.4). Stellar evolution gives the main
contribution to mass loss in the early stages of the simulation, resulting in a steeper slope
of the mass evolution. After 10Myr, the mass loss in the cases with stellar evolution
is twice as large as that in the cases without stellar evolution. The absence of original
binaries delays the mass loss, because the cluster needs to form its binaries dynamically
before they start ejecting other stars.

Energy variation

Figure 3.6 shows the evolution of the total kinetic energy (Ek), the total potential energy
(Eg) of the centres of mass and the total binding energy of binary systems (Eb). Binary
stars produce an initial sharp increase of the kinetic energy by yielding their internal
energy to the surrounding stars. This results in the fast cluster expansion seen in Fig. 3.4.
After this initial sharp increase, the kinetic energy of the clusters with original binaries
decreases at a fast rate as a consequence of the ejection or evaporation of high velocity
stars. After the first ∼ 5 Myr, the kinetic energy of the star clusters with original binary
systems becomes similar to that of the other clusters, and they evolve in the same way
for the rest of the simulation.

The total binding energy of the initial binary population is much higher than the
typical gravitational energy of the centres of mass. Our original binary stars are, in fact,
mostly hard and a small fraction of their total internal energy is sufficient to deeply affect
the evolution of the cluster. The decrease of the total binding energy springs from two
factors. Firstly, some binary stars escape from the system. This causes the slow decrease
of the black line in Fig. 3.6. Secondly, stellar and binary evolution tend to remove binary
stars from the population, via mergers, supernova explosions but also direct collisions
between stars. This process is important since the very first stages, because the binary
fraction is very high for the most massive stars and because the initial semi-major axes
from Sana et al. (2012) are skewed to small values. By comparing the Bin models and
the Bin+SE models, one can infer that this second factor is the main responsible for the
variation of the total binding energy.

If there are no original binary systems (NoBin and NoBin+SE models), the cluster
creates its own population, with binding energies of the order of the gravitational energy
scale. The case without stellar evolution is characterized by a monotonic increase of the
binding energy, where binaries form and the hardest ones tend to harden. In the end,
the total binding energy is dominated by the binding energy of a very few binaries. In
presence of stellar and binary evolution, after an initial increase, the total binding energy
decreases when stellar and binary evolution processes take over.

3.4.3 Binary populations

In order to understand how binary populations evolve and interact with the host cluster,
we must estimate how their binding energy distribution is related to the mean energy of
the cluster. Figure 3.7 shows the distribution of binding energies for one representative
simulation at four different snapshots, in presence of original binary systems and stellar
evolution.

At the beginning of the simulation, binding energies are very large if compared to
the mean kinetic energy. In particular, the hardest part of the distribution is about five
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Figure 3.6: Evolution of the total kinetic energy (Ek, left), of the total gravitational
energy of the centres of mass (Eg, middle) and of the total binding energy of the binary
systems (Eb, right). Lines and colours are the same as in Fig. 3.4.

orders of magnitude higher than the typical energy scale of the star cluster. This means
that the other stars in the cluster "see" the hardest binary systems as if they were single
stars: the cross section of the hardest binary systems is so small that these can hardly
interact with single stars.

In absence of original binary systems with a sufficiently large cross section, the star
cluster creates new binary systems, with a larger semi-major axis and, thus, a large cross
section for three-body encounters. This is the reason behind the large number of binary
systems created at successive snapshots, that are close to the mean kinetic energy of
the cluster. Finally, the loosely bound tail of the binary distribution consists of soft
binaries that are continuously created and destroyed by dynamical interactions with their
neighbours.

Orbital parameters and multiplicity fraction

Figure 3.8 shows the evolution of the probability density function (PDF) of the binary
semi-major axes and of the mass ratios and the multiplicity fraction, defined as the sum
of the fraction of binaries and the fraction of bound triple systems. We consider two
representative populations, one for simulations with original binaries (the same as in
Fig. 3.7) and one for simulations without original binaries, in presence of stellar evolution.

In presence of original binaries, the PDFs significantly change with time, because of
the creation of a large number of dynamical binaries. In particular, the distribution of
semi-major axes extends to higher values, and shows a secondary peak at 103 AU, the
typical value at which dynamical binaries form. This value corresponds to ≈ 5 × 10−3

pc, that is the lowest distance scale (it is the typical distance of stars split into Plummer
spheres). As explained above, the cluster responds to the absence of interacting binaries
by creating its own. This also explains why the distributions of the dynamically formed
semi-major axes and mass ratios are very similar to those that form in absence of original
binaries (as shown in the lower-left panel of Fig. 3.8).

As for the mass ratios’ (q) distribution, dynamical interactions produce a steep increase
of the PDF at high values, because the new binaries are typically formed by the low mass
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Figure 3.7: Distribution of binding energies for a cluster, in presence of original binaries
and stellar evolution. Four different snapshots are shown: t = 0 Myr (yellow solid line,
hatched area), t = 1 Myr (green dot-dashed line), t = 5 Myr (blue dashed line), t = 10
Myr (magenta dotted line). The vertical lines represent the mean kinetic energy of the
cluster, defined as the mean kinetic energy of the centres of mass within two half-mass
radii (where binaries are more likely to interact).

stars in the Plummer spheres. Also, the distribution of mass ratios extends towards lower
values than the initial lower limit (q = 0.1). Most of the variations in the PDFs take place
in the first 1 Myr, that is when the environment is dynamically active. Since then, the
binary distributions remain almost unchanged. Also, the large number of dynamically-
created small-mass binaries increases the total multiplicity fraction from ≈ 6% to ≈ 26%.
In particular, these systems populate the lowest mass bin of Figure 3.1, by increasing the
binary fraction from 0 to 20%.

In the absence of original binaries (NoBin+SE case), dynamical interactions produce
a distribution of semi-major axes that is similar to the distribution of dynamically formed
binary systems in the Bin+SE case, but cannot reproduce the hardest part of the Sana
et al. (2012) binary distribution. Also, dynamical mechanisms tend to create equal-
mass binaries. Remarkably, the binary fraction of dynamically formed binaries in the
NoBin+SE case is mass-dependent: it grows with the mass of the primary star and
mimics the trend of the observed distribution (Moe & Di Stefano 2017).

Hence, in the absence of original binary stars, the cluster is able to produce a mass-
dependent binary fraction. However, there is not sufficient energy at small scales to
reproduce the hardest part of the initial distribution of Sana et al. (2012).
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Figure 3.8: Distribution of semi-major axes (left), mass ratios (centre) and multiplicity
fractions (right) for a cluster with (upper panels) and without (lower panels) original
binaries. Four different snapshots are shown: t = 0 Myr (yellow solid line, hatched
area, circles), t = 1 Myr (green dot-dashed line, squares), t = 5 Myr (blue dashed line,
triangles), t = 10 Myr (magenta dotted line, diamonds). The lower right panel shows
that, in the absence of original binary stars, the cluster is able to dynamically produce a
mass-dependent binary fraction, reminiscent of the observed one.

Exchanges

The degree of interactions between the binary systems and their host cluster can be
quantified by evaluating the number of exchanges that take place. Fig. 3.9 shows the
variation of the incremental number of exchanges. The original binaries take part in a
limited number of exchanges, most of which are in the first 2 Myr of the cluster’s life, when
densities allow an efficient interaction with the other stars. In the following evolution, the
original binaries interact much less, as indicated by the flatness of the curve. Nonetheless,
because the original binaries are very hard, the few interactions they undergo exchange a
sufficient amount of energy to affect the global evolution of the cluster, as shown by the
evolution of r50 (Fig. 3.4).

Interestingly, the total number of exchanges is about two orders of magnitude higher
than that of original binaries and does not depend on the presence of an initial population
of binary stars. This aspect indicates that the cluster under consideration is a very
active environment for binary interactions and confirms that the most interacting binaries
are dynamically created by the cluster itself. However, most of these exchanges involve
binaries that are loosely bound (see also Fig. 3.7) and thus their energy exchange is quite
low with respect to that of the original binaries.
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Figure 3.9: Number of exchanges Nexch as a function of time for the entire population of
binaries (solid lines, filled markers) and for the sub-population of original binaries (dashed
lines, empty markers). Nexch is calculated at steps of 0.25 Myr. Lines and colours are the
same as in Fig. 3.4.

3.4.4 Comparison with other initial conditions

The novelty of the Hydro initial conditions can be better understood if we compare their
evolution to that of other, more idealized initial conditions. To this purpose, we ran
simulations with the initial conditions presented in Section 3.3.1. Since we want to focus
on the dynamical evolution with different initial phase-space distributions, we decided to
run these simulations without stellar evolution.

Cluster Expansion

Figure 3.10 shows the evolution of the medians of the distributions of r50, of r10, and of the
ratio r50/r10, that measures the concentration of the system. In the initial conditions, the
Hydro clusters have a much larger ratio r50/r10 than the other models. Hence, they have
very dense cores and rather extended halos, because of the scale of the sub-structures. For
these intrinsic differences, the evolution of the characteristic radii of the Hydro simulations
is considerably different from that of the other distributions.

In the first Myr, the Hydro case is the only one that does not show a monotonic
increase of r50 because of the initial sub-cluster motion (as discussed in Section 3.4.2).
All of the other initial conditions develop a monotonic increase of r50 and r10, but with
different slopes. The Loose Fract case, that is initialized with the same half-mass radius
as the Hydro case, shows a mild expansion on both scales, due to its supervirial state. The
low density of the central regions (the initial value of r10 is larger than in the Hydro case
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Figure 3.10: Early evolution of the 50% Lagrangian radius (left-hand panel), the 10%
Lagrangian radius (central panel), and the concentration of the cluster, quantified by
r50/r10 (right-hand panel). Different lines represent the medians of different initial phase-
space distributions: Hydro (yellow circles), King (pink squares), Loose Fract (magenta
triangles), Dense Fract (blue diamonds). The solid lines and filled markers represent
clusters with original binaries, while the dashed lines and empty markers correspond to
clusters without original binaries.

by a factor of 5, see Tab. 3.1) does not allow efficient star-star interactions, that would
power a faster expansion. The King and Dense Fract models, that are set to match the
core radius of the initial Hydro simulations, undergo a stronger expansion from the very
beginning of their evolution. These two different initial conditions display a very similar
behaviour.

The peculiarity in the evolution of the Hydro case is evident when the evolution of
the ratio r50/r10 is taken into account. All the cases except the Hydro show a monotonic
slow decrease for the r50/r10 ratio, that indicates that the systems expand at a similar
rate at both scales. The Hydro initial conditions, instead, show an initial steep decrease
of r50/r10, because the growth of r50 is balanced by the sub-clump motion (see Fig. 3.4),
while at smaller scales the cluster expands rapidly. Even when the cluster has reached a
nearly monolithic shape, the evolution of its r50/r10 ratio is very different from the other
initial conditions: this ratio rapidly increases until it reaches a maximum at about 5 Myr.
Such a difference may be explained in terms of the stronger mass segregation that features
the Hydro simulation (we will discuss this point in Sect. 3.5).

Binding energies

Figure 3.11 shows the evolution of the total binding energy for different initial conditions.
In absence of original binaries, every initial configuration creates its own population and
the resulting total binding energy is strictly connected to the initial energy scale of the
system. In particular, the Hydro, King and Dense Fract final binding energies are similar
to each other as they are initialized with similar core radii, whereas the total binding
energy of the Loose Fract systems is about one order of magnitude lower. Most of the
total binding energy is contained in a limited number of binaries (from 2 to 5) that go
on hardening as the simulation proceeds. This relation between the total binding energy
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Figure 3.11: Evolution of the total binding energy of the binary systems. Lines and
colours are the same as Fig. 3.10.

and the global scales of the clusters confirms that star clusters are self-regulating systems
with respect to their binary populations (Goodman & Hut 1989; Goodman et al. 1993):
in absence of binaries, each system creates its own population of binaries, with binding
energies of the order of its global energy scales.

3.5 Discussion

The Hydro star clusters show a very distinctive evolution of the r50/r10 ratio. We studied
what factor determines the growth of this ratio during the monolithic phase. In partic-
ular, we focus on the impact of the initial degree of mass segregation. In fact, a high
degree of mass segregation would allow the most massive stars to rapidly form a centrally
concentrated core that is dynamically separated from the rest of the cluster, the scenario
usually referred to as Spitzer instability (Spitzer 1969). If this happens, the distribution
of massive stars is hotter than the rest of the cluster, because they remain more concen-
trated and the local value of the velocity dispersion decreases with the distance from the
centre.

Previous N−body simulations have found evidence that, for a wide range of initial
conditions, the most massive stars in a system do not move slower than the low-mass
stars (Parker & Wright 2016; Spera et al. 2016; Webb & Vesperini 2017), as one would
expect based on the tendency of stellar systems towards energy equipartition (Trenti &
van der Marel 2013; Bianchini et al. 2016). A confirmation that the most massive stars
can have higher velocities has also been found in proper motion observations of the open
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cluster NGC 6530 (Wright et al. 2019). Wright & Parker (2019) showed that this aspect
can be explained by the combination of Spitzer instability and a cool collapse. If the most
massive stars remain more concentrated than the rest of cluster, then the core, that is
mostly populated by these massive stars, is expected to expand slower than the rest of
the cluster.

To quantify the impact of mass segregation on the evolution of the cluster, we selected
the 30 most massive stellar particles3 and evaluated the ratio between their velocity disper-
sion σmass and the velocity dispersion of all the stellar particles σall. For these calculation,
only stars inside two half-mass radii are considered, as done in Wright & Parker (2019).
The evolution of the ratio between these two velocity dispersions is shown in the upper
panel Fig. 3.12. In all the phase-space configurations except the Hydro, the velocity dis-
persion ratio is about one and does not change very much with time. In the Hydro case,
instead, the high initial value of the velocity dispersion ratio suggests that the stellar clus-
ter has a strong initial mass segregation. Also, during the monolithic phase, the velocity
dispersion ratio grows because, after the merger of the two main sub-clumps, their most
massive stars rapidly segregate towards the centre, while the system globally expands.
The segregation of the massive stars towards the centre of the potential well may be en-
hanced by the fact that, in each sub-clump, the stars have already formed a massive core
that segregates as one single, very massive particle (see also Fujii et al. 2012). In the case
with original binaries, the velocity dispersion value grows enough to match the observed
value for NGC 6530.

The connection between the growth of the velocity dispersion ratio and the degree
of mass segregation is confirmed by the trend shown by the ratio of the half-mass radii
of the 30 most massive stellar particles rmass and the overall half-mass radius r50, shown
in the bottom panel of Fig. 3.12. The Hydro simulations show an initial strong degree
of mass segregation. The initial small scale expansion makes this ratio instantly grow;
but, then, it rapidly decreases because of the strong segregation at the centre of the
cluster. The initial degree of mass segregation seems to be the most important factor in
the growth of the velocity dispersion ratio in the Hydro case: a stronger initial degree of
mass segregation triggers the rapid formation of a dense core that expands more slowly
than the rest of the cluster. Also, the rapid formation of a dense core could influence the
interaction rate between binaries and the host cluster. If the original hard binaries live
in a denser environment, they are more likely to interact: this explains why the Hydro
initial conditions present different expansions for the cases with and without binaries (Fig.
3.10).

3.6 Summary and Conclusions

We studied the early dynamical evolution (t < 10Myr) of young stellar clusters with
realistic populations of binaries and different initial phase-space distributions. The initial
conditions for our N−body simulations are obtained by combining a new algorithm to
generate realistic stellar and binary distributions (Sana et al. 2012; Moe & Di Stefano
2017) with the joining/splitting algorithm defined in Ballone et al. (2021), to derive initial
conditions from hydrodynamical simulations.

3In the case of a binary, we consider the particle with a mass equal to the total mass of the binary
and place in the centre of mass of the binary.
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Figure 3.12: Left panel: evolution of the ratio between the velocity dispersion of the 30
most massive star particles σmass and the velocity dispersion of all the stars inside inside
2 r50, σall. The grey data point with error bar is the observed value for NGC 6530 (Wright
et al. 2019). Right panel: evolution of the ratio between the half-mass radius of the 30
most massive star particles (rmass) and the overall half-mass radius, r50. Lines and colours
are the same as Fig. 3.10.

For the hydrodynamical initial conditions (Hydro cluster), we considered different
evolutionary cases by switching on and off the presence of original binary stars and stellar
evolution in order to weight their contribution to the dynamical evolution. Our results
show that the evolution of the cluster is characterized by two distinct evolutionary phases:
first, the global expansion of the cluster is balanced by the approaching of its main sub-
clumps, while at small scales the cluster expands instantaneously. After 1 Myr, the
cluster has reached a nearly monolithic shape and expands as a whole, following a post-
core collapse expansion. Binaries tend to speed up the expansion of the cluster in this
phase, making the half-mass radius expand faster, while stellar evolution has a minor
impact on the early dynamical evolution of the cluster, but has a major impact on mass
loss.

We compared the evolution of the Hydro star cluster to that of star clusters with
spherical distributions of stars (King, Loose Fract, Dense Fract). The main difference
between the Hydro cluster and the others relies in the evolution of the r50/r10 ratio, that
measures the concentration of the system. The Hydro cluster, in fact, shows a distinctive
trend of r50/r10. At the beginning of the simulations, r50/r10 is much larger in the Hydro
cluster than in the other models, because the Hydro cluster is an aggregate of several
sub-clumps, resulting in a large total half-mass radius, but its core radius is very small,
since it basically coincides with the core radius of the densest sub-clump. The r50/r10
ratio decreases very fast (< 1 Myr) in the Hydro cluster, reaching values similar to the
other clusters, because of the hierarchical merger of the sub-clumps, which reduces the
total half-mass radius. However, at t > 1 Myr the value of r50/r10 keeps decreasing in
the spherical models, while it grows again in the Hydro case. The late growth of r50/r10
in the Hydro cluster is due to its initial high degree of mass segregation, which allows it
to form a centrally concentrated core of massive stars. As this core expands more slowly
than the rest of the cluster, the ratio between the velocity dispersion of the most massive

80



3.6 Summary and Conclusions

stars and that of all the stars increases. In the case with binaries, it grows enough to
match the observed value for NGC 6530 (Wright et al. 2019).

The initial binary stars we set based on observational constraints (Sana et al. 2012;
Moe & Di Stefano 2017) are generally too hard to interact in an efficient way with the
host environment. The stellar systems recover from the lack of interacting binaries by
dynamically creating additional binaries with binding energy of the order of their kinetic
energy. The dynamically formed binaries are not hard enough to reproduce the hardest
part of the initial distribution of Sana et al. (2012). Also, in the absence of original
binaries, the dynamically formed binaries show a binary fraction that increases with the
mass of the primary star. This behaviour spontaneously reproduces the relation between
binary fraction and stellar mass found in observations (Moe & Di Stefano 2017).
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Chapter 4

Dynamics of binary black holes in
young star clusters: the impact of
cluster mass and long-term evolution

Based on:
Torniamenti S., Rastello S., Mapelli M., Di Carlo U. N., Ballone A., Pasquato M.,
“Dynamics of binary black holes in young star clusters: the impact of cluster mass
and long-term evolution”, 2022, MNRAS 517, 2953

Abstract

Dynamical interactions in dense star clusters are considered one of the most ef-
fective formation channels of binary black holes (BBHs). Here, we present direct
N−body simulations of two different star cluster families: low-mass (∼ 500− 800
M⊙) and relatively high-mass star clusters (≥ 5000 M⊙). We show that the forma-
tion channels of BBHs in low- and high-mass star clusters are extremely different
and lead to two completely distinct populations of BBH mergers. Low-mass clusters
host mainly low-mass BBHs born from binary evolution, while BBHs in high-mass
clusters are relatively massive (chirp mass up to ∼ 100 M⊙) and driven by dynami-
cal exchanges. Tidal disruption dramatically quenches the formation and dynamical
evolution of BBHs in low-mass clusters on a very short timescale (≲ 100 Myr), while
BBHs in high-mass clusters undergo effective dynamical hardening until the end of
our simulations (1.5 Gyr). In high-mass clusters we find that 8% of BBHs have
primary mass in the pair-instability mass gap at metallicity Z = 0.002, all of them
born via stellar collisions, while only one BBH with primary mass in the mass gap
forms in low-mass clusters. These differences are crucial for the interpretation of the
formation channels of gravitational-wave sources.

keywords: black hole physics – binaries: general – galaxies: star clusters: gen-
eral – stars: kinematics and dynamics - gravitational waves - methods: numerical

4.1 Introduction
Over the last six years, the LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015a)
interferometers dectected an increasing number of gravitational wave (GW) events (e.g.,
Abbott et al. 2016b; Abbott et al. 2016; Abbott et al. 2019, 2021f). At the end of the
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third observing run, the third GW transient catalog (GWTC-3) consists of 90 GW can-
didates (Abbott et al. 2021d,e). Most of these events are produced by the inspiral of two
black holes (BHs). Among the most peculiar events, the merger remnant of GW190521
(Abbott et al. 2020; Abbott et al. 2020d) is the first intermediate-mass BH (IMBH)
ever detected in the mass range 100− 1000M⊙, with a remnant mass of 142+28

−16M⊙. Also,
GW190412 (Abbott et al. 2020a) represents the first observation of a BBH with asymmet-
ric masses. The population of mergers in GWTC-3 also includes two binary NS mergers,
GW170817 and GW190425 (Abbott et al. 2017b,a, 2020b), and two BH-NS candidates,
GW200105_162426 and GW200115_042309 (Abbott et al. 2021a). Furthermore, Nitz
et al. (2021) and Olsen et al. (2022) reported several additional GW candidates (see also
Venumadhav et al. 2019, 2020; Nitz et al. 2020, 2021).

The abundance of detected GW sources allows us to attempt to reconstruct their
formation channels. In fact, thanks to the distinctive features that different formation
channels imprint on the merging progenitors, even a few hundreds detections may be
sufficient to identify their main formation pathways (Fishbach et al. 2017; Zevin et al.
2017; Stevenson et al. 2017; Farr et al. 2017; Vitale et al. 2017; Bouffanais et al. 2019,
2021a,b; Wong & Gerosa 2019; Wong et al. 2021; Zevin et al. 2021; Ng et al. 2021; Roulet
et al. 2021; Mehta et al. 2022). The isolated formation scenario, for example, predicts the
formation of BBHs with primary masses up to 40 − 50M⊙, mostly equal-mass systems,
with preferentially aligned spins and vanishingly small eccentricity in the LIGO–Virgo
band (Mandel & de Mink 2016; Gerosa et al. 2018). According to this scenario, the
formation of tight enough binary black holes (BBHs) can take place through evolutionary
processes like common envelope (Bethe & Brown 1998; Portegies Zwart & Yungelson 1998;
Belczynski et al. 2002, 2008, 2010; Dominik et al. 2012, 2013; Mennekens & Vanbeveren
2014; Loeb 2016; Belczynski et al. 2016a; Mapelli & Giacobbo 2018; Mapelli et al. 2019;
Giacobbo & Mapelli 2018; Kruckow et al. 2018; Spera et al. 2019; Tang et al. 2020;
Belczynski et al. 2020; García et al. 2021), chemically homogeneous evolution (de Mink &
Mandel 2016; Mandel & de Mink 2016; Marchant et al. 2016; du Buisson et al. 2020), or
stable mass transfer (e.g., Giacobbo et al. 2018; Neijssel et al. 2019; Bavera et al. 2021).

The dynamical formation scenario, instead, involves dynamical processes in dense
stellar environments, like young star clusters (YSCs, e.g., Portegies Zwart & McMillan
2002; Banerjee et al. 2010; Mapelli et al. 2013; Ziosi et al. 2014; Goswami et al. 2014;
Banerjee 2018; Perna et al. 2019; Di Carlo et al. 2019, 2020a; Banerjee 2021b; Rastello
et al. 2020, 2021), open clusters (e.g., Rastello et al. 2019; Kumamoto et al. 2019, 2020),
globular clusters (e.g., Downing et al. 2010; Benacquista & Downing 2013; Rodriguez
et al. 2015, 2016a; Antonini & Rasio 2016a; Askar et al. 2017; Fujii et al. 2017; Askar
et al. 2018; Fragione & Kocsis 2018; Rodriguez et al. 2019), and nuclear star clusters
(e.g., O’Leary et al. 2009; Miller & Lauburg 2009; Arca-Sedda & Capuzzo-Dolcetta 2018;
VanLandingham et al. 2016; Hoang et al. 2018; Arca-Sedda & Gualandris 2018; Arca
Sedda & Benacquista 2019; Arca Sedda et al. 2020). With respect to the isolated channel,
this scenario predicts the formation of merging BBHs with larger primary masses (e.g.,
McKernan et al. 2012; Mapelli 2016; Antonini & Rasio 2016a; Gerosa & Berti 2017; Stone
et al. 2017; McKernan et al. 2018; Rodriguez et al. 2019; Yang et al. 2019), with the
possibility of hierarchical mergers (e.g., Antonini et al. 2019; Doctor et al. 2020; Kimball
et al. 2020; Mapelli et al. 2021a, 2022; Antonini et al. 2022), isotropic spin distributions
(e.g., Rodriguez et al. 2016b), and, in some rare cases, non-zero eccentricity in the LIGO–
Virgo band (e.g., Samsing 2018; Samsing & D’Orazio 2018; Samsing et al. 2018; Rodriguez
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et al. 2018; Zevin et al. 2019; Dall’Amico et al. 2021).
In this work, we will focus on the dynamical formation of BBHs in young and open

stellar clusters. These systems are of key importance to interpret the formation of BBHs,
because they host the formation of the most massive stars (Lada & Lada 2003; Portegies
Zwart et al. 2010; Crowther et al. 2010), which are the progenitors of massive BHs. Thanks
to the high initial central density of the host cluster (ρ ≳ 103M⊙pc

−3, Portegies Zwart
et al. 2010), binary stars can efficiently interact with the surrounding stars since the very
beginning of their life. This leaves a deep imprint on the properties of the population of
BBHs and, in turn, merging BBHs. When YSCs are eventually disrupted by the tidal
field of their host galaxy, their stellar content is released into the galactic field. Thus,
a large fraction of BBHs which are now in the field may have formed in young stellar
systems.

The dynamical formation and evolution of BBHs in YSCs are explored in a realistic
way by means of direct N−body simulations, where up-to-date prescriptions for single and
binary stellar evolution are implemented. In many cases, only the first few hundreds Myr
of the life of the star cluster are considered. This is due, on the one hand, to their small
relaxation timescales, trlx ≲ 100Myr (Portegies Zwart et al. 2010). In particular, the rapid
decrease of their central density within the first Myr suppresses the interaction rate in
later phases, making them less and less important in shaping the BBH properties. On the
other hand, producing large sets of N−body simulations, which are necessary to explore
the population of merging BBHs with sufficient statistics, has high computational costs.
Thus, evolving large sets of YSCs for thousands of Myr would turn to be prohibitively
expensive. As a consequence, many simulation of YSCs only take into account the first
100 Myr of the star cluster life (Di Carlo et al. 2019, 2020a,b; Rastello et al. 2020, 2021).

The aim of this work is to evaluate the impact of the late phases (up to 1500Myr) of
the dynamical evolution of the star cluster on the population of BBH mergers. To this
purpose, we have run two sets of N−body simulations of YSCs in different mass regimes
and studied the evolution of the population of BBHs. To calculate the impact of the long-
term evolution of the cluster, we compared the BBH merger populations at two different
snapshots, 100Myr and 1500Myr. The paper is organized as follows: in Section 4.2, we
describe the details of the N−body simulations and our method. In Section 4.3, we report
the results for the BBH populations and mergers. Finally, Section 4.4 summarises our
conclusions.

4.2 Methods

4.2.1 Direct N -body code

We performed our simulations with the N−body code nbody6++gpu (Wang et al. 2015,
2016), coupled with the population synthesis code1 mobse (Mapelli et al. 2017; Giacobbo
et al. 2018; Giacobbo & Mapelli 2018). nbody6++gpu is the GPU parallel version of
nbody6 (Aarseth 2003a). It implements a 4th-order Hermite integrator, individual block
time-steps (Makino & Aarseth 1992) and Kustaanheimo-Stiefel regularization of close
encounters and few-body systems. The force contributions at short time steps (irregular
forces) are computed by a neighbour scheme (Nitadori & Aarseth 2012), and for long time

1mobse is publicly available at this link.
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Figure 4.1: Evolution of the half-mass radius rh (upper panels, solid lines), core radius rc
(lower panels, solid lines), and tidal radius rt (dashed lines) for low-mass clusters (left)
and high-mass clusters (right). Each set is divided into three subsets: for the low-mass
clusters MSC ∈ [500, 600] M⊙ (magenta), [600, 700] M⊙ (green), [700, 800] M⊙ (yellow).
For the high-mass clusters MSC ∈ [5000, 6000] M⊙ (magenta), [6000, 7000] M⊙ (green),
[7000, 8000] M⊙ (yellow). Each line shows the median value over the simulated YSCs per
each mass bin. The black lines (right panels) refer to the same physical quantities for the
star clusters with MSC = 5× 104M⊙.
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Figure 4.2: Distribution of the ratio between the star cluster bound mass at the end of the
simulation, MSC,f , and its initial mass MSC, for stellar systems with initial mass MSC ∈
[500, 800] M⊙ (magenta), [5000, 6000] M⊙ (blue), [6000, 7000] M⊙ (green), [7000, 8000]
M⊙ (yellow), and MSC = 5× 104M⊙ (black).

steps (regular force/timesteps) the force is evaluated by considering all the particles of the
system. The irregular-force calculation is performed using CPUs, while the regular forces
are evaluated on GPUs using the CUDA architecture. A solar neighbourhood-like static
external field (Wang et al. 2016) is included in the force integration. This choice for the
tidal field is quite conservative, because the static tidal field does not take into account
possible perturbations by disk and bulge shocking, and encounters with molecular clouds,
which can accelerate the star cluster disruption (Gieles et al. 2006). Orbital decay and
circularization by GW emission are calculated following Peters (1964). Post-Newtonian
terms are not included in this version of nbody6++gpu.

mobse is a customized and upgraded version of bse and includes up-to-date prescrip-
tion for massive stellar winds (Giacobbo et al. 2018), core-collapse (Fryer et al. 2012) and
electron-capture supernovae (Giacobbo & Mapelli 2019), natal kicks (Giacobbo & Mapelli
2020) and (pulsational) pair instability supernovae (Mapelli et al. 2020). Stellar winds
are modeled by assuming that the mass loss of hot massive stars depends on metallicity
as Ṁ ∝ Zβ, where β is modelled as in Giacobbo et al. (2018).

For this work, we adopt the delayed model for core-collapse supernovae from Fryer
et al. (2012). In this model, there is no mass gap between NSs and BHs: we assume that
compact objects more massive than 3 M⊙ are BHs. Natal kicks are modeled according
to the prescription by Giacobbo & Mapelli (2020): the magnitude of the kick can be ex-
pressed as vkick ∝ fH05mejm

−1
rem, where fH05 is a random number drawn from a Maxwellian

distribution with a one-dimensional root mean square velocity σ = 265 km s−1, mrem is the
mass of the remnant, and mej is the difference between the final mass of the star before the
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Figure 4.3: Mass distribution of BHs in BBHs, for low-mass clusters (left) and high-mass
clusters (right). Red line: original BBHs at 1500 Myr. Orange filled histogram: original
BBHs at 100 Myr. Blue dashed line: exchanged BBHs at 1500 Myr. Light blue hatched
histogram: exchanged BBHs at 100 Myr. Among the original BHs, we highlight in red
those with mass in the PI mass gap at 1500 Myr (red dash-dotted line) and at 100 Myr
(red filled histogram). These are anomalous original BBHs in which one of the two stellar
components has merged with another star before producing the BBH (see Section 4.3.2
for details).

supernova explosion and the mass of the remnant. Binary evolution processes (tides, mass
transfer, common envelope and GW-orbital decay) are implemented as in Hurley et al.
(2002). The common envelope process is implemented by adopting the energy formalism
(Webbink 1984). In this case, we assume α = 3, while the concentration parameter λ is
calculated self-consistently as in Claeys et al. (2014).

4.2.2 Initial conditions

Stellar and binary populations

We generate the initial masses of stars (single stars, primary and secondary members of
binary systems) according to a Kroupa (2001) initial mass function between 0.1M⊙ and
150M⊙. We assume a metallicity Z = 0.002, approximately corresponding to 0.1 Z⊙. For
binary systems, we assume a distribution of mass ratios F(q) ∝ q−0.1, with q ∈ [0.1, 1]
(Sana et al. 2012).

Our algorithm generates a mass-dependent binary fraction fb, according to Moe &
Di Stefano (2017)2. The details of the assumed binary fraction per mass bin are shown

2Moe & Di Stefano (2017) take their data from different spectroscopic surveys, including binary
systems in the field, OB associations, and young star clusters. Ideally, here we should consider only the
sub-sample of binary systems in young star clusters (Sana et al. 2012), but this is not feasible, because
the lowest-mass stars are missing in such sub-sample.
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Mass Bin [M⊙] Binary fraction fb
0.1–0.8 0.2
0.8–2.0 0.4
2.0–5.0 0.59
5.0–9.0 0.76
9.0–16.0 0.84

16.0–150.0 0.94

Table 4.1: Adopted values of the original binary fraction fb (column 2) per each stellar
mass bin (column 1). From Moe & Di Stefano (2017).

in Table 4.1. We generate the orbital parameters of binary systems following the ob-
servational prescriptions by Sana et al. (2012). In particular, we randomly draw the
orbital periods from: F(P) ∝ P−0.55, with P = log10(P/days) ∈ [0.15, 5.5], and the
eccentricities from F(e) ∝ e−0.45, with e ∈ [10−5, emax(P )]. For a given orbital period,
we set an upper limit for the eccentricity distribution according to Moe & Di Stefano
(2017): emax(P ) = 1 − [P/(2 days)]−2/3. Our method allows to obtain orbital properties
for O-type stars (i.e., the progenitors of BHs) consistent with those observed in young
and open clusters and OB associations (Sana & Evans 2011; Sana et al. 2012). Based
on population-synthesis simulations by de Mink & Belczynski (2015), we expect that our
choice of the initial binary parameters has a mild (negligible) impact on the evolution of
BBHs in low-mass (high-mass) clusters, where binary evolution is most (least) important
with respect to dynamical interactions. We refer to Torniamenti et al. (2021) for more
details on our initial binary population.

Stellar clusters

We initialize stellar positions and velocities in the simulated YSCs with fractal initial
conditions, with a fractal dimension D = 1.6, in order to mimic the observed clumpiness
of embedded star clusters (Cartwright & Whitworth 2004; Sánchez & Alfaro 2009; Kuhn
et al. 2019). We generate fractal phase space distributions with Mcluster (Küpper et al.
2011).

We uniformly sample the half-mass of our star clusters between 0.5 and 2 pc (e.g.,
Portegies Zwart et al. 2010; Krumholz et al. 2019). To evaluate the impact of long-term
dynamics on the properties of BBH mergers in different dynamical regimes, we consider
two sets of star clusters in different mass ranges (MSC):

• Low-mass star clusters , with mass ranging from 500M⊙ to 800M⊙. These clusters
present short dynamical evolution timescales at all scales: this reduces the proba-
bility of dynamical interactions and, consequently, of dynamical exchanges. Also,
YSCs in this mass range typically host a few massive stars, and, consequently, BHs.
This further suppresses the rate of dynamical exchanges3 (Rastello et al. 2021).

3An exchange tends to happen when the intruder is more massive than at least one of the members of
the binary system, because this leads to a substantial increase of the binary’s binding energy, hardening
the binary system (Heggie 1975; Hills & Fullerton 1980; Heggie & Hut 2003). Our low-mass clusters
lack massive intruders because all of the massive stars are already born in hard binary systems. Thus,
exchanges tend to be suppressed.
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• High-mass star clusters , with mass ranging from 5000M⊙ to 8000M⊙. These clus-
ters have a higher rate of dynamical encounters, as a consequence of the higher
densities, longer dynamical timescales and larger number of massive stars. Thus,
they are expected to produce a larger number of exchanged binaries and BBHs
(Rastello et al. 2021). In this sample we also include two star clusters with mass
5× 104M⊙.

Here, the terms low-mass and high-mass clusters are intended only for comparison between
the two considered samples. In the literature, low-mass clusters can include even star
clusters with much lower mass, down to a few ten M⊙ (e.g., Lada & Lada 2003), while
the highest mass clusters can reach ∼ 107 M⊙ (e.g., Georgiev et al. 2016).

In both cases, we sample the mass of star clusters from a power-law distribution
dN/dMSC ∝M−2

SC , following Lada & Lada (2003). The two sets consist in 35578 and 3555
star clusters, respectively. The number of star clusters in the two samples is set to obtain
the same total mass. The total kinetic (K) and potential (W ) energy of the cluster are
set to give a virial ratio Q = 2K/W = 1.

4.2.3 Impact of long-term evolution

The main goal of this work is to evaluate the impact of dynamics on the population of
BBH mergers. In particular, we simulate our star clusters up to tf = 1500Myr. This
corresponds to a total integration time of ∼ 150 relaxation timescales (trlx, Spitzer 1987)
for low-mass clusters which have, on average, trlx ∼ 10 Myr. For high-mass cluster,
on average, trlx ∼ 26 Myr, and the total integration time is longer than 50 trlx. To be
completely sure that we captured all the dynamical encounters relevant for the population
of BBHs, we should integrate all our clusters until they become tidally filling, or until
the last BH leaves its parent cluster by ejection or evaporation. For the most massive
clusters (> 7000 M⊙), our clusters become tidally filling at later times with respect to
tf = 1.5 Gyr (Figure 4.1). However, integrating our most massive clusters for more than
1.5 Gyr currently requires prohibitive computational resources. Moreover, we found that
only 0.01% (6%) of all BBHs are still bound to their parent cluster in our low-mass (high-
mass) star clusters. Hence, the vast majority of our BBHs has already been dynamically
ejected at 1.5 Gyr and will not be affected by dynamical interactions at later stages.

We compare the population of BBH mergers that form in the first 100 Myr of the
evolution of the simulated YSCs with the population of BBH mergers at 1500 Myr. In
particular, we first evaluate the population of BBH mergers that we would have obtained
if we had integrated the evolution of our YSCs only for the first 100 Myr. This population
consists in:

• BBHs that merge within the first 100 Myr, during the N−body simulations.

• BBHs that will merge within a Hubble time in absence of further dynamical inter-
actions. To calculate them, we consider the population of existing BBHs at 100
Myr and evolve their orbital eccentricity and semi-major axis by integrating the
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Figure 4.4: Distribution of formation times (tform) of binary systems that give birth to
exchanged BBHs, in low-mass clusters (left) and high-mass clusters (right). Upper panels:
all exchanged BBHs. Lower panels: exchanged BBH mergers. Blue dashed line and
hatched area: BBHs that formed when both components were stars. Orange dot-dashed
line: BBHs that formed when one component was a star and the other was a BH. Black
line: BBHs that formed when both components were BHs. Grey area: all BBHs.

equations of Peters (1964), to calculate the energy loss due to GW emission:

da

dt
= −64

5

G3m1m2 (m1 +m2)

c5 a3 (1− e2)7/2
f1(e),

de

dt
= −304

15
e
G3m1m2 (m1 +m2)

c5 a4 (1− e2)5/2
f2(e),

(4.1)

where

f1(e) =

(
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24
e2 +
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96
e4
)

f2(e) =

(
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e2
)
. (4.2)
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All the BBHs that merge within a Hubble time (tH = 14Gyr) are classified as
mergers. This is equivalent to assume that the YSCs dissolve at 100 Myr, and their
BBHs evolve only via GW emission (no dynamical interactions) after the death of
their parent star clusters.

To evaluate how dynamical encounters affect the distribution of BBH mergers in the
late phases of the cluster life, we repeat the aforementioned procedure after 1500 Myr,
i.e.

• we count how many BBHs merge within 1500 Myr, during the N−body simulations;

• we integrate the semi-major axis and eccentricity evolution of the other BBHs that
are still bound at 1500 Myr, accounting for GW emission only (Peters 1964), and
we count how many of them merge within one Hubble time.

If the dynamical interactions within the cluster are still effective after 100 Myr, they
can affect the population of BBHs, and, consequently, of BBH mergers. In particular,
dynamical processes can form new BBHs or harden the existing ones, allowing them to
merge within an Hubble time, or even before the end of the simulation, thus increasing
the population of BBH mergers. In some other cases, dynamical interactions can disrupt
existing BBHs, possibly removing them from the population of mergers that we estimated
at 100 Myr.

4.2.4 Estimate of relativistic kicks

When two BHs merge, the post-merger remnant receives a kick due to the asymmetric
momentum dissipation by GWs (e.g., Favata et al. 2004). This recoil can reach up to
thousands km s−1, depending on the symmetric mass ratio and spin orientation (Cam-
panelli et al. 2007). If the kick magnitude is larger than the escape velocity of the host
star cluster, the post-merger remnant is ejected. For the star clusters considered in this
work (Sect. 4.2.2), the initial escape velocities range from ∼ 1 to ∼ 10 km s−1, and may
rapidly decrease to zero as a consequence of cluster dissolution.

As our simulations do not include relativistic kicks, we evaluated the probability that
a post-merger remnant is ejected a posteriori, using the equations reported by Maggiore
(2018). In particular, for each BBH merger, we randomly draw a distribution of spin
magnitudes for each component from a Maxwellian distribution: we consider two cases:
σχ = 0.1 and σχ = 0.01 (see, e.g., Bouffanais et al. 2021a, for this assumption). Also,
we assume that the spin directions are isotropically distributed over the sphere (e.g.,
Rodriguez et al. 2016b). We randomly draw 105 different spin magnitudes and orientations
for each BH, and calculate the resulting relativistic kick distribution. Then, we evaluate
the probability that the BH remnant is retained within the cluster, that is the probability
to find a kick value lower than the escape velocity at the BBH merger.

For all our BBH mergers, we find a retention probability p < 2% if σχ = 0.1 and
p < 5% if σχ = 0.01. Thus, we can safely assume that all the post-merger remnants are
ejected from their host cluster. Therefore, we will remove from our sample any second-
generation BBH, i.e. any BBH that has at least one component resulting from a previous
BBH merger.
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Figure 4.5: Mass of the secondary BH (m2) versus the primary BH (m1) of BBH mergers in
low-mass clusters (left) and high-mass clusters (right). Orange diamonds: original BBHs
at 1500 Myr. Red crosses: original BBHs at 100 Myr. Light blue circles: exchanged BBHs
at 1500 Myr. Blue plusses: exchanged BBHs at 100 Myr. Green circles: exchanged BBHs
at 1500 Myr in star clusters with mass 5× 104M⊙.

4.3 Results

4.3.1 Global evolution of the cluster

Figure 4.1 shows the evolution of the half-mass radius rh, tidal radius rt, and core radius
rc of the two sets of clusters. Each set is split into three sub-sets of different mass in
order to better take into account the impact of the cluster mass on its expansion. As a
comparison for high-mass clusters, we also show the evolution of the stellar clusters with
5× 104M⊙.

All the clusters show an initial rapid expansion due to the early mass loss caused by
stellar and binary evolution (stellar winds and supernovae). This expansion is visible at
all scales, but is more pronounced for rh, consistently with the results of Chattopadhyay
et al. (2022). Also, the early mass loss causes the initial steep decrease of the tidal radius.

After the most massive stars have evolved into compact remnants, the cluster enters
a slower, relaxation-driven phase, as visible from the change of slope of rt. In particular,
the tendency towards energy equipartition makes the low-mass stars move altogether to
the outer regions, approaching the tidal boundary, while the heavier stars and compact
remnants sink at the centre of the cluster, if they are not already segregated (Spitzer
1987). As a result, stars are progressively removed by the galactic tidal field, leading to
cluster dissolution. Eventually, the tidal stripping, further enhanced by the cluster mass
loss, and the possible energy generation by massive BBHs within the cluster core lead
the stellar cluster out of dynamical equilibrium (Giersz et al. 2019), causing an abrupt
disruption of the cluster and a sharp decrease of its relevant radii.

The duration of the relaxation-driven phase depends on the initial cluster mass. For
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low mass clusters, the short relaxation timescales (Spitzer 1987), combined with the small
initial mass, cause a rapid dissolution. Their typical lifetime is 400 Myr, with no particular
distinction among the three subsets. The evolution of high-mass clusters, instead, is
characterized by a much milder expansion, where the growth of rh is balanced by tidal
stripping. As a result, rh remains almost constant (a similar trend can be seen in Banerjee
2017 for more massive clusters) for the first 1000 Myr. The cluster dissolution happens
at different times, depending on the mass subset considered. The typical lifetime spans
from 1250Myr for clusters with mass < 6000M⊙, up to more than 1500Myr for clusters
more massive than 7000M⊙. In contrast, the 5 × 104M⊙ clusters undergo a far slower
expansion and their tidal radius is almost unchanged at the end of the simulation, except
for the initial rapid decrease due to stellar evolution mass loss.

In both low- and high-mass clusters, the core radius increases monotonically until the
cluster is disrupted, thus lacking a clear core-collapse phase. As shown by Chattopadhyay
et al. (2022), this is not unexpected for models with a large original binary population. In
this case, original binaries can heat up the cluster since the very beginning of its evolution,
preventing a deep core collapse.

Figure 4.2 shows the distribution of the ratio between the star cluster bound mass at
1500 Myr, MSC,f , and its initial mass, MSC. Low-mass clusters are completely disrupted
by the tidal field of the host galaxy at the end of the simulation. In only one case, a core
of about 120M⊙, corresponding to 18% of the initial mass, can survive4.

As for high-mass clusters, one third of the stellar systems are still bound at the end
of the simulation. In this set, the number of surviving clusters increases with the initial
mass of the cluster. Also, more massive clusters can generally retain a higher fraction of
mass. Finally, stellar clusters with 5× 104M⊙ preserve about half of their initial mass at
1500 Myr.

4.3.2 BBH populations

Figure 4.3 shows the mass distribution of BHs in BBHs in the two considered snapshots:
100 Myr and 1500 Myr. In this section, we analyse both merging and non-merging BBHs.
Among the BBH populations, we distinguish between original BBHs, whose progenitors
were already present as binary stars in the initial conditions of the simulation5, and
exchanged BBHs, which have formed as a consequence of dynamical exchanges.

In low-mass clusters, the BH populations in the two snapshots are almost identical,
suggesting that, after 100Myr, dynamical encounters play a negligible role in the evolution
of BBHs. In contrast, high-mass clusters are still dynamically active at later phases, as
indicated by the increase of the number of exchanged BHs between 7M⊙ and 50M⊙.

The BH populations of low- versus high-mass clusters show several differences. First,
low-mass clusters display a larger number of original BBHs with mBH > 20M⊙. Such

4Most of the remaining mass of this interesting survivor consists of a BBH with a total mass of 80
M⊙, composed of two BHs of 44 M⊙ and 36 M⊙, respectively. This BBH formed via dynamical exchange.
The rest of the mass is distributed in 50 low-mass stars. This is a unique case in our sample. We may
speculate that, because the BBH formed in a relatively loose environment (∼ 10M⊙ pc−3), its high mass
and the poor dynamical interaction rate allowed a number of stars to remain within the tidal radius,
without being scattered away by the BBH itself.

5In the literature, a binary star that is already present in the initial conditions of a direct N -body
simulation is often referred to as a primordial binary star. Here, we use the term original instead of
primordial, to avoid any possible confusion with the concept of primordial BHs (e.g., Carr et al. 2016).
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massive original BBHs tend to be suppressed in high-mass clusters, because they undergo
stronger dynamical interactions for a longer time, eventually resulting in a dynamical
exchange. This leads to the formation of nearly equal-mass, massive exchanged BBHs
in the high-mass clusters. This process is also enhanced by the higher initial number of
massive stars in high-mass clusters with respect to low-mass clusters. As a consequence,
original BBHs in high-mass clusters tend to have lower masses than those in low-mass
clusters.

Figure 4.4 displays the distribution of formation times of the binary systems that
give birth to exchanged BBHs (tform). In low-mass clusters, 8% of these systems form
when both components are still stars, and about 15% when only one component is a BH.
Most of the binaries that result in BBHs form by the pairing of two BHs, with a peak at
formation time tform = 10 − 20 Myr. The rapid decrease of the dynamical activity and
the dissolution of the stellar cluster cause a steep decrease in the distribution of tform, and
only 12% of the BBHs form after 100 Myr in low-mass clusters.

In high-mass clusters, about 88% of the binaries resulting in BBHs form from the
pairing of two BHs. In this case, the distribution of tform shows a flatter trend, hinting
at an efficient dynamical activity of the cluster at later times. In fact, more than one
third of the BBHs pair up after 100 Myr. In these clusters, only 5% of the binaries that
produce BBH systems form when both components are still stars.

Mass-gap BHs and IMBHs

More than 7% of our simulated BBHs in high-mass clusters (here we consider both merging
and non-merging systems) have primary mass > 60M⊙.

The formation of such massive BHs, with mass ranging from ∼ 60M⊙ to ∼ 120M⊙ is
suppressed in single stellar evolution by pair-instability (PI) and pulsational pair insta-
bility (PPI). Nonetheless, as shown by Spera et al. (2019), Di Carlo et al. (2019) and Di
Carlo et al. (2020a), BHs in the mass gap can form as a consequence of stellar mergers,
which produce very massive stars that eventually collapse to BHs.

BHs in this mass range may also be the result of previous BH mergers (e.g., Banerjee
2021a). However, almost all merger remnants are expected to be ejected by relativistic
kicks in our simulated star clusters (Sect. 4.2.4). Hence, all the BHs which have a mass
60−120 M⊙ and are members of BBHs form as a result of stellar mergers in our simulated
star clusters.

In five cases, a BH with mass > 60 M⊙ even forms in an original binary system. These
are systems in which the original binary remains bound after the merger of one of its
components with a third star, producing an original binary with a mass-gap primary BH
(Fig. 4.3).

Low-mass clusters display a lower percentage of mass-gap BHs in BBHs (∼ 4%),
because of their lower rate of dynamical interactions as well as the limited initial number
of massive stars (Sect. 4.3.2). Also, no mass-gap BH is present in original binary systems.

Furthermore, ∼ 1.5% of all BHs that are bainry members in our high-mass clusters are
IMBHs (i.e., BHs with mass > 100 M⊙). The maximum BH mass we find in BBHs in our
high-mass clusters is 250 M⊙. As in the case of BHs in the PI mass-gap, all the IMBHs
we found form via multiple stellar collisions (e.g., Di Carlo et al. 2021). In contrast, only
eight BHs with mass > 100M⊙ form in low-mass clusters, corresponding to ∼ 0.1% of all
the BHs born in the low-mass clusters.
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Low-mass clusters High-mass clusters
BBH mergers 100 Myr 1500 Myr 100 Myr 1500 Myr
All 40 40 115 307
Original 30 30 64 60
Exchanged 10 10 51 247
Inside YSC 1 1 25 174
IMBHs 1 1 4 47
mtot,max [M⊙] 126 126 249 273

Table 4.2: We report the number of all (first row), original (second row) and exchanged
(third row) BBH mergers. We also show the number of BBHs that merge inside the cluster
during the simulation (fourth row). Finally, we report the number of IMBHs produced
by BBH mergers (merger remnants, fifth row), and their maximum BH mass (last row).

4.3.3 BBH mergers

In this Section, we focus on BBH mergers, i.e. BBHs that reach coalescence in less than
14 Gyr.

Low-mass clusters

Figure 4.5 shows the mass of the secondary BH (m2) versus the primary BH (m1) for
BBH mergers. In low-mass clusters, the population of BBH mergers mostly consists
of original BBHs, as a further proof of the poor dynamical activity of these systems.
In general, dynamical exchanges do not affect the population of BBHs after 100 Myr
(∼ 10 trlx), as already suggested by Fig. 4.3, with two exceptions. First, one BBH that
is predicted to merge if the simulation is run only for 100Myr, is later disrupted by
dynamical interactions, and no longer exists at 1500Myr. Also, the second most massive
merger (with a final remnant mass mtot = 99M⊙) needs to dynamically harden for longer
than 100Myr to enter the regime in which the orbital decay by GWs becomes effective. As
shown in Fig. 4.4 (lower panel), 70% of the binaries that give birth to merging BBHs form
at early stages, when both components are stars. At later stages, the scarce efficiency of
dynamical hardening in low-mass clusters quenches the formation of further BBH mergers.

The properties of BBH mergers are summarized in Table 4.2. In low-mass clusters,
almost all the BBHs are no longer bound to their host cluster when they merge. In
this work, a BBH merger is labelled as bound if it merges inside the cluster during the
simulation.

High-mass clusters

High-mass star clusters host a population of BBH mergers about eight times larger than
low-mass clusters, although the total initial mass of the two sets of star clusters is approx-
imately the same. This enhancement of BBH mergers in high-mass clusters is particularly
evident for the exchanged systems, which, at 1500 Myr, represent the majority of BBH
mergers.

The populations of BBH mergers at 100 and 1500 Myr show notable differences. A
number of original BBHs that, at 100 Myr, are predicted to merge are later disrupted (Fig-
ure 4.5 and Table 4.2). Some exchanged BBHs are also disrupted after the first 100Myr.
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However, these disrupted exchanged BBHs are compensated by the late formation and/or
hardening of other exchanged BBHs: we predict 51 exchanged BBH mergers at 100 Myr
(∼ 4 trlx), while at 1500 Myr (∼ 60 trlx) we find five times more exchanged BBH mergers,
as shown in Table 4.2. Figure 4.4 shows that most of the binaries that result in BBH
mergers form via exchange when both components have already collapsed to BHs. As
opposed to low-mass clusters, merging BBHs can form at very late stages, up to 1000
Myr.

A large number of BBHs (174) merge during our simulations, while they are still inside
their parent cluster. Their post-merger remnant is always ejected from the cluster by
gravitational recoil (see Sect. 4.2.4), thus preventing the possibility of second-generation
BH mergers.

In high-mass clusters, 47 BBH mergers give birth to IMBHs, with a remnant mass
mtot > 100M⊙. In the eight most massive mergers, the primary BH is itself an IMBH.
The most massive merger remnant has a mass mtot = 273M⊙.

Figure 4.6 shows the distribution of chirp masses of BBH mergers, for the two consid-
ered snapshots (100 and 1500 Myr). The changes in the distribution are mostly due to the
long-term dynamical activity within high-mass clusters. The late dynamical activity trig-
gers a large increase of the number of mergers with high chirp mass mchirp ≈ 35− 40M⊙.

4.3.4 BBH orbital properties at formation

To estimate for how long a stellar cluster is dynamically active and can affect the for-
mation of BBH mergers, we evaluated tM, defined as the time (since the beginning of
the simulation) at which the semi-major axis of the BBH has become sufficiently tight to
merge within a Hubble time via GW emission. Figure 4.7 shows tM as a function of the
initial orbital properties of the BBH, that is its initial semi-major axis (aBBH) and orbital
eccentricity (eBBH).

In both low-mass and high-mass clusters, the original BBH mergers show typical values
of tM ≲ 10Myr, aBBH ≲ 0.1AU, and circular orbits. These properties spring from their
formation pathway. These BBHs are, in fact, the result of original binaries that hardened
as a consequence of a common envelope phase. When the second BH forms, the orbital
properties of the BBH already allow it to merge within an Hubble time. For this class
of BBH mergers, then, tM mainly coincides with the time at which the second BH in the
binary forms. Also, because the common envelope phase leads to a large mass loss, the
resulting BH masses are systematically smaller than the exchanged ones.

As a confirmation of this idea, Fig. 4.8 shows tM as a function of the total mass of
the merging BBH, mtot and the time at which the BBH forms, tBBH. Original BBHs
have tBBH ≲ 10Myr and, in most cases, tBBH = tM. In high-mass stellar cluster, seven
original BBHs show tM > tBBH, with tM that can be as high as 1000 Myr. In these cases,
dynamical hardening allows the binary system to enter the GW regime after the BBH
formation. Because these mergers have not undergone a common envelope phase, they
can have masses comparable to the exchanged BBHs (up to mtot = 102M⊙). In contrast,
tBBH ranges from 5 Myr to 1100 Myr for exchanged BBHs. In high-mass clusters, more
than 20% of all BBHs form after the first 100 Myr. Because exchanged BBHs have
not undergone mass loss by a common envelope phase, and because dynamical exchanges
favour the formation of massive binaries, their total masses are systematically higher than
those of original BBH mergers, with mtot ≳ 40M⊙.
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Figure 4.6: Chirp mass distribution of merging BBHs at 100 Myr (light-blue filled his-
togram) and at 1500 Myr (blue line), for all the simulated clusters.

In low-mass YSCs, only three exchanged BBH mergers have aBBH ≳ 1 AU. In two
cases, these mergers correspond to the two most massive BBHs, which formed in dynam-
ically active environments. As a further proof of their dynamical origin, these BBHs are
characterized by eccentric orbits. In high-mass clusters, where dynamical interactions
play a major role, the distribution of BBH mergers extends to higher values of aBBH and
tM. In particular, exchanged binaries, when they form, are generally characterized by
large semi-major axes, up to 1.5× 104AU, and thus take longer times to enter the regime
in which GWs efficiently shrink the semi-major axis. In some cases, tM can be as high as
1400Myr, indicating that dynamical hardening can play a role even at the very end of
the simulation.

Finally, the dynamical encounters that lead to the formation of BBHs leave a distinc-
tive imprint on their eccentricity. The resulting binary systems are, in fact, characterized
by larger eccentricities at formation, with eBBH > 0.16. Exchanged BBHs that have values
of tM ≲ 100Myr and high eccentricities can be later disrupted by dynamical interactions,
and are no longer present at 1500 Myr.

4.3.5 Formation pathway of BHs in the upper mass gap

In high-mass (low-mass) stellar clusters, the primary component of 26 BBH mergers (1
BBH merger) has mass in the PI gap. This corresponds to 8% (2.5%) of all BBH mergers

6In this discussion, we refer to the eccentricity at the BBH formation. During the in-spiral phase, the
BBH mergers will still be circularized as a consequence of GW emission.
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Figure 4.7: Time at which the semi-major axis of the BBH has become sufficiently tight
to merge within a Hubble time via GW emission (according to Peters 1964) versus semi-
major axis of the BBH when it forms (aBBH), for merging BBHs in low-mass clusters
(left) and high-mass clusters (right). The markers are the same as in Figure 4.5. The
colour-map encodes the information on the orbital eccentricity at the BBH formation,
eBBH. If a BBH at 1500 Myr is also present at 100 Myr, it is marked with a white cross
(original) or plus (exchanged).

in high-mass (low-mass) clusters. Figure 4.9 shows the evolution of some BHs in the
PI mass gap that become the primary components of BBH mergers. In all cases, the
progenitor star undergoes at least one collision with another star. The merger product
of such stellar collisions is an exotic star, with an undersized He core with respect to
the hydrogen-rich envelope. Such star does not develop PI, because its central properties
(temperature and density) do not fall within the PI regime (e.g., Renzo et al. 2020; Costa
et al. 2021, 2022; Ballone et al. 2022). At the end of its evolution, the stellar product
directly collapses into a BH more massive than 60M⊙.

In all our simulations, the binary system that eventually results in a BBH merger with
primary mass in the PI gap forms via dynamical exchanges, when both components have
already collapsed into BHs. We conservatively assume that mergers between a BH and
a star do not affect the mass of the BH, because we expect mass accretion onto the BH
to be very inefficient (Di Carlo et al. 2020a,b, but see Rizzuto et al. 2021 for a different
assumption).

4.4 Summary

We have studied the formation of BBHs in young and open star clusters via direct N -
body simulations, exploiting the codes nbody6++gpu (Wang et al. 2015) and mobse
(Mapelli et al. 2017). We simulated two different classes of star clusters: low-mass (500–
800 M⊙) and relatively high-mass (5000–8000 M⊙) systems. We find that the properties
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Figure 4.8: Time at which the semi-major axis of the BBH has become sufficiently tight
to merge within a Hubble time via GW emission (according to Peters 1964) versus total
mass of the BBH merger (mtot), for merging BBHs in low-mass clusters (left) and high-
mass clusters (right). The markers are the same as in Figure 4.5. The colour-map encodes
the information on the time at which the BBH forms, tBBH. If a BBH at 1500 Myr is also
present at 100 Myr, it is marked with a white cross (original) or plus (exchanged).

and timescales of BBH mergers in the two star-cluster families are extremely different.
In low-mass clusters, most BBHs form in the first 100 Myr and are the result of the

evolution of original binary stars, which evolve through common envelope. They do not
harden significantly after ∼ 100 Myr. In contrast, the late evolutionary stages (> 1 Gyr)
are crucial for high-mass clusters. Exchanged BBHs (i.e., BBHs that form via dynamical
exchanges) are the most common BBH mergers in high-mass clusters (Figures 4.3 and 4.5).
While exchanged BBHs form preferentially in the first ∼ 100 Myr, they keep hardening
significantly until the end of the simulations (1.5 Gyr, Figure 4.4). This confirms the
importance of integrating the evolution of relatively massive clusters (≳ 5000 M⊙) for
> 1 Gyr.

This difference between the BBH population of low-mass and high-mass star clus-
ters mostly springs from the different two-body relaxation timescale and tidal disruption
timescale of the two star cluster families. Our low-mass and high-mass star clusters have
an average two-body relaxation timescale (Spitzer 1987) of ∼ 10 Myr and ∼ 26 Myr,
respectively. This means that mass segregation and other dynamical processes happen
earlier in low-mass clusters. Furthermore, low-mass clusters dissolve already at ∼ 300
Myr because of the galactic tidal field, while our high-mass clusters become tidally filling
at ≳ 1200 Myr (Figure 4.1). Hence, the dynamical activity of the low-mass clusters is
quenched by tidal evaporation about four times earlier than that of high-mass clusters.

In both low-mass and high-mass clusters, the latest BBHs that form (exchanged BBHs)
are the most massive ones (primary mass ≳ 30 M⊙), because dynamical exchanges favour
the pairing of the most massive BHs (Figure 4.5). The distribution of the chirp mass of
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Figure 4.9: Evolution of the total mass (thick lines) and core mass (thin lines), for the
progenitors of BHs in the PI mass gap and for the most massive primary component of a
BBH merger (blue line). The dashed lines mark the time interval before the star becomes
a BH. Different markers indicate: the merger between the progenitor star or the BH and
another star (stars), the time when the BBH forms (open circles), the merger between the
BH and another BH (filled circle), and the time at which the binary is possibly disrupted
(crosses). The grey area encloses the PI mass gap, from ∼ 60M⊙ to ∼ 120M⊙.

BBH mergers shows two main peaks: the main peak at ∼ 30− 40 M⊙, and a secondary
peak at ∼ 7− 15 M⊙. The high-mass peak develops mainly after 100 Myr (Figure 4.6).

These results confirm that we must integrate the evolution of a star cluster for at least
50 two-body relaxation timescales if we want to probe its BBH population.

BBH mergers in low-mass clusters are driven mostly by binary evolution via common
envelope: they form with short semi-major axis (∼ 0.1 AU) and low orbital eccentricity
(Figure 4.7). In contrast, massive BBHs in high-mass clusters form with larger semi-major
axis (> 10 AU) and higher orbital eccentricity (0.1− 1).

A non-negligible percentage (8%) of our simulated BBH mergers in high-mass clusters
have primary component’s mass in the pair-instability (PI) mass gap. All of them form
via stellar collisions, in which a main-sequence star merges with a more evolved star (core
He burning). About 80% of these massive BBHs leave a merger remnant in the IMBH
range. In contrast, in low-mass clusters only one dynamical BBH merger produces an
IMBH.

Furthermore, in the high-mass clusters, we find a few original BBHs with primary
mass in the PI mass gap. These are systems in which one of the two components of the
binary star undergoes a collision with a third star and collapses to a BH in the PI mass
gap without leading to the ionization of the original binary system.

Overall, our study shows that the formation channels of BBHs in low-mass (∼ 500− 800
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M⊙) and high-mass star clusters (≥ 5000 M⊙) are extremely different and lead to two
completely distinct BBH populations. Low-mass clusters host mainly low-mass BBHs
born from binary evolution, while BBHs in high-mass clusters are relatively massive and
driven by exchanges. This difference is crucial for the interpretation of GW sources.
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Chapter 5

Hierarchical binary black hole mergers
in globular clusters: the impact of
cluster evolution

Based on the draft of the manuscript:
Torniamenti S., Mapelli M., et al.
“Hierarchical binary black hole mergers in globular clusters: the impact of cluster
evolution”, to be submitted to MNRAS.

Abstract

Hierarchical mergers are one of the main proposed channels to form massive bi-
nary black holes (BBHs). Here, we explore the process of hierarchical mergers in
globular clusters by means of our semi-analytic code fastcluster. We model the
structural evolution of globular clusters by taking into account mass loss by stellar
evolution, two-body relaxation, and tidal stripping by the host galaxy. These pro-
cesses quench the hierarchical assembly of black holes (BHs), by reducing the cluster
central density and escape velocity. We find that globular clusters host hierarchical
BH mergers up to the third generation when we properly account for cluster evolu-
tion, whereas our non-evolving cluster models produce four (or more) generations of
BHs. Our third-generation BHs reach a maximum mass of ∼ 200M⊙ at low metallic-
ity (Z = 0.0002), and are produced only if the initial escape velocity is ≳ 30 km s−1.
The BH spin distribution shows a peak at χ1 = 0.7 for second-generation BHs,
an χ1 = 0.8 for third-generation BHs, with a spread that depends on the first-
generation distribution. In turn, this has also an impact on the precessing spins,
whose distribution peaks at χp = 0.7 for second-generation BHs, independently of
the first-generation spin distribution.

keywords: gravitational waves – black hole physics – stars: black holes – stars:
kinematics and dynamics – galaxies: star clusters: general

5.1 Introduction

The detection of gravitational waves (GWs) by the Advanced LIGO (Aasi et al. 2015)
and Virgo (Acernese et al. 2015b) inteferometers has opened new perspectives for our
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understanding of compact objects. At the present day, the third gravitational-wave tran-
sient catalog (GWTC-3) includes a total of 90 candidate events with a high probability of
astrophysical origin (Abbott et al. 2021b,d). Most of them are interpreted as the merger
of two black holes (BHs). Also, several additional candidates have been claimed, based
on independent pipelines (Zackay et al. 2019; Venumadhav et al. 2020; Nitz et al. 2020).
The growing sample of GW detections has made it possible, for the first time, to try
to reconstruct the underlying black hole (BH) population, and understand the complex
physical processes that affect their formation and evolution.

A fundamental piece of this puzzle is represented by the detection of the most massive
BH mergers, namely GW190521 (Abbott et al. 2020; Abbott et al. 2020d), and, possibly,
GW190403_051519, GW190426_190642 (Abbott et al. 2021f), and GW200220_061928
(Abbott et al. 2021d). In particular, the remnant of GW190521, which originates from
the inspiral of two BHs with masses m1 = 85+21

−14M⊙ and m2 = 66+17
−18M⊙ (Abbott et al.

2020d) is the very first intermediate-mass BH (IMBH) ever detected in the mass range
100− 1000M⊙. Also, its BH progenitors lie within the (pulsational) pair-instability (PI)
mass gap (60 − 120M⊙, Belczynski et al. 2016b; Woosley 2017; Spera & Mapelli 2017;
Marchant et al. 2019; Stevenson et al. 2019), where BHs are not expected to form from
the collapse of a single star.

The formation pathway of BBH mergers within and above the PI mass gap is still
matter of debate, because of the large uncertainties that affect both the lower and the
upper boundary (Farmer et al. 2020; Mapelli et al. 2021b; Farrell et al. 2021; Belczynski
et al. 2020; Costa et al. 2022). Direct collisions of stars or BHs in dense stellar environ-
ments, like young, globular and star clusters might produce BHs that fill the PI mass
gap. More specifically, the collision a massive star with a well-developed helium core and
a non-evolved companion may lead to the formation of exotic stars with an undersized
core, whose temperature and density do not fall within the PI regime, and which directly
collapses into a BH more massive than ∼ 60M⊙ (Spera et al. 2019; Renzo et al. 2020;
Costa et al. 2022; Ballone et al. 2022). Direct N−body simulations show that these col-
lisions are not rare in young and open clusters (Di Carlo et al. 2019, 2020a; Torniamenti
et al. 2022b). Also, stellar-origin BHs can undergo repeated mergers with other BHs, a
scenario referred to as hierarchical merger scenario (e.g., Miller & Hamilton 2002; Fish-
bach et al. 2017; Gerosa & Berti 2017; Doctor et al. 2020; see Gerosa & Fishbach 2021
for a recent review on this topic).

The hierarchical assembly of BHs is a complex process, because it involves a non-trivial
interplay between the properties of the binary BH (BBH) population (mass ratios, spins)
and the structure and evolution of the host cluster (escape velocity, central density). In
particular, when two BHs merge, the BH remnant receives a relativistic recoil at birth,
due to the asymmetric momentum dissipation by GWs (e.g., Fitchett 1983; Favata et al.
2004; Campanelli et al. 2007; Lousto & Zlochower 2011). This recoil can be as large as
thousands of km s−1 (Holley-Bockelmann et al. 2008; Moody & Sigurdsson 2009; Fragione
& Kocsis 2018; Gerosa & Berti 2019; Arca Sedda et al. 2020), depending on the mass
ratio and the spin alignment of the merging BHs, and may lead to the ejection of the
BH remnant. This prevents the possibility of successive mergers. For this reason, the
stellar environments that mainly favour the hierarchical assembly of BHs are those with
larger escape velocities. Also, when the merger remnant is retained in the cluster, the
star cluster central density needs to be high enough to allow the merger remnant to pair
up again by dynamical exchanges or three-body encounters (e.g., Heggie 1975; Hills &
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Fullerton 1980). Massive stellar systems like nuclear star clusters (NSCs) and globular
clusters (GCs) are ideal candidates to host hierarchical mergers, because of their high
densities (≳ 104M⊙ pc−3) and escape velocities (≳ 10− 100 km s−1).

In this work, we aim to explore the impact of the evolution of the host star cluster
on the production of dynamically-formed BBH hierarchical mergers, by simultaneously
taking into account mass loss, relaxation, and tidal stripping by the host galaxy . In
particular, we will focus on GCs. Exploring the relevant parameter space, for both the
BBHs (masses, mass ratios, spins), and the host cluster (total mass, density, metallicity),
is not feasible by hybrid Monte-Carlo and/or N-body codes. To avoid this complication,
a number of semi-analytic codes has been developed, e.g. cBHBd (Antonini et al. 2019;
Antonini & Gieles 2020b; Antonini et al. 2022), fastcluster (Mapelli et al. 2021a,
2022), B-POP (Arca Sedda et al. 2021), and Rapster (Kritos et al. 2022b,a). In particular,
Mapelli et al. (2021a, 2022) introduced a fast and flexible semi-analytic model to integrate
the hardening and GW emission in different environments, that is young stellar clusters,
globular clusters, and nuclear star clusters. This tool, named fastcluster, overcomes
the numerical challenge of simulating BBHs in massive and long-lived star clusters by
integrating the effect of dynamical hardening and GW emission with a fast and semi-
analytical approach, calibrated on direct N−body models. In this work, we have further
improved this tool, by implemented all the relevant aspect of cluster evolution: stellar
evolution, two-body relaxation and tidal stripping by the host galaxy. In this way, we
can integrate, in the same framework, both the evolution of the host stellar environment
(mass, escape velocity, central density) and the orbital properties of the dynamically-
formed BBH mergers (BH masses, semi-major axis, eccentricity).

This work is organized as follows. In Sect. 5.2 we introduce the details of the code
implementation. In Sect. 5.3 we report our result for the populations of hierarchical
mergers. Finally, Sect. 5.4 summarizes our conclusions.

5.2 Methods

In this work, we have implemented the relevant aspects of star cluster evolution in fast-
cluster (Mapelli et al. 2021a, 2022), which allows to integrate the hardening and GW
emission via semi-analytical recipes. To do this, we have coupled fastcluster with the
semi-analytic code clusterBH (Antonini & Gieles 2020b), which provides recipes for the
evolution of the host cluster as a consequence of stellar mass loss and relaxation. Also,
we have implemented tidal stripping in our code, by referring to the analytic formulas by
Gieles et al. (2011).

In order to achieve a fast but realistic description of the star cluster evolution, our code
evolves only the bulk properties of the stellar cluster, that are relevant for the formation
and evolution of BBHs, without considering the detailed internal structure. In particular,
we will trace the evolution of Mtot, MBH, and the half-mass radius of the cluster rh
(Antonini & Gieles 2020b).

5.2.1 Star cluster evolution

The basic assumption of our cluster evolution model is that the star cluster consists in
two components, BHs, with a total mass of MBH, and all the other members (including
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Figure 5.1: Evolution of the mass of the stellar (upper panels) and BH mass (lower panels),
for the N−body simulations (blue, solid line) and fastcluster (red dashed line). The
red vertical dashed line displays the time of core collapse in fastcluster.

stars and the other stellar remnants), with a total mass of M∗ (Breen & Heggie 2013).
The total mass of the cluster is Mtot =M∗ +MBH.

Stellar mass loss

We assume that the mass loss by stellar evolution evolves as a function of time (Antonini
& Gieles 2020b):

Ṁ∗,sev =

{
0 t < tsev,

−νM∗
t

t ≥ tsev,
(5.1)

where tsev is the time-scale for mass loss by stellar evolution, which we will calibrate with
N−body simulations (see Sect. 5.2.2) and ν ≈ 0.07 is a free parameter fitted to the
results of N−body simulations (Antonini & Gieles 2020b). As a result of mass loss by
stellar evolution, the cluster is assumed to expand adiabatically:

ṙh,sev = −Ṁ∗,sev

Mtot

rh. (5.2)

Two-body relaxation

We model the relaxation processes by considering the case of a two-component stellar
cluster hosting a BH sub-system, following Breen & Heggie (2013). As the stellar system
evolves towards energy equipartition, the most massive components (the BHs in this case)
become more and more segregated at the centre. If we assume that the star cluster is
Spitzer (1969) unstable, a temperature difference holds between the two components,
generating a heat transfer from the centre of the cluster towards the outer parts. When
several relaxation times have elapsed, the stellar cluster achieves a state of balanced
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evolution (Hénon 1961; Breen & Heggie 2013), where energy is produced in the BH sub-
system core by dynamical interactions between BHs and BBHs. The produced energy is
then conducted via two-body relaxation, and spreads throughout the bulk of the cluster.
The energy flux from the core is regulated by the energy demand of the whole cluster
(Hénon 1961). As a consequence, the evolution of the BH sub-system can be related to
the global evolution of the cluster.

We define the onset of the the balanced evolution as the moment of the BH core
collapse (Antonini & Gieles 2020b):

tcc = Nrh trh,ψ(t = 0), (5.3)

where Nrh = 3.21 is fitted to N−body models (Antonini & Gieles 2020b), and trh,ψ is the
half-mass relaxation time-scale, defined as (Spitzer & Hart 1971b):

trh,ψ = 0.138

√
Mtot r3h
G

1

⟨m⟩ψ ln Λ
. (5.4)

Here, ⟨m⟩ is the mean mass of a star in the cluster, including all the components, and
ln Λ = 10 is the Coulomb logarithm. The parameter ψ is the heat conduction efficiency
of the cluster in presence of a mass spectrum. In fact , ψ = 1 for equal-mass systems, but
can be as high as 30–100 for young clusters, where very massive stars are present (Gieles
et al. 2010). For this work, we refer to the derivation of ψ for a two-component system
under the assumption of energy equipartition, given by Spitzer & Hart (1971b):

ψ =
(
m3/2

∗ M∗ +m
3/2
BHMBH

)
N

3/2
tot /M

5/2
tot , (5.5)

where m∗ and mBH are the mean mass of stars and BHs, respectively, and Ntot is the total
number of particles within the cluster.

In each run, the mean mass of the BH population is set to the mean mass of the BH
catalogue used to generate the first-generation BBHs (see Sect. 5.2.4). This allows to
incorporate the dependence of the BH mass on metallicity. The total mass of the BH
population, MBH, is tuned based on the comparison with realistic N−body simulations,
as described in Sect. 5.2.2

After the onset of balance evolution, the rate of energy from the core to the bulk of the
cluster is given by the energy flux at the half-mass radius (Hénon 1961; Breen & Heggie
2013):

Ė = ζ
|E|
th,ψ

, (5.6)

where E = −0.2GM2
tot/rh is the total energy, and ζ = 0.1 quantifies the expansion rate

(Gieles et al. 2011). In a BH sub-system, the dynamical interactions that produce heat
in the core also result in the ejection of BBHs and BHs. More specifically, a BBH that
forms within the cluster hardens as a consequence of dynamical interactions, until the
dynamical recoil is high enough to eject it from the cluster (Goodman 1984).

As a consequence, we can couple the energy generation within the core to the BH
mass-loss rate, which, in turn, depends on the total energy and the relaxation time-scale
(Breen & Heggie 2013; Antonini & Gieles 2020b):

ṀBH =

{
0, t < tcc orMBH = 0

−βMtot

trh
t ≥ tcc orMBH > 0,

(5.7)
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where β ≈ 0.003 is fitted to N−body models (Antonini & Gieles 2020b). The resulting
expansion rate can be derived, under the assumption of virial equilibrium from eq. 5.6:

ṙh,rlx = ζ
rh
trh

+ 2
Ṁtot

Mtot

rh, (5.8)

where Ṁtot = Ṁ∗ + ṀBH. The combined evolution for the half-mass radius, by including
stellar mass-loss and relaxation processes is:

ṙh =


0 t < tsev,

ṙh,sev t ≥ tsev and t < tcc,

ṙh,sev + ṙh,rlx t ≥ tcc

(5.9)

Tidal mass loss

Tidal stripping brings an additional stellar-mass loss term (Gieles et al. 2011):

Ṁ∗,tid = −ξJ
Mtot

trh,ψ=1

. (5.10)

We set the mass-loss time-scale as the relaxation time for ψ = 1 (Gieles et al. 2011),
because evaporation takes place at the tidal boundary, where almost no BHs are present.
Also, ξJ incorporates the cluster evolution at different tidally-filling regimes:

ξJ =
3

5
ζ

(
rh/rJ
[rh/rJ]1

)3/2

, (5.11)

where rJ is the Jacobi (tidal) radius, and [rh/rJ]1 = 0.4 is set following Gieles et al. (2011).
In particular (Gieles & Baumgardt 2008):

rJ =

(
G

3ω2

)1/3

M
1/3
tot , (5.12)

where ω = VCR
−1
G depends on the cluster galactocentric distance RG and its circular

velocity VC (Gieles & Baumgardt 2008). To reproduce the Galactic rotational curve at
each RG, we refer to a Dehnen (1993) profile:

VC = GMg
R2−γ

(R + rs)3−γ
. (5.13)

where the galaxy total mass Mg = 3.18× 1011M⊙, the galaxy length scale rs = 5.12 kpc,
and γ = 0.54 are fitted to reproduce the Milky Way rotational curve (Leveque et al. 2022).

The combined stellar mass loss, by including both stellar evolution and tidal stripping,
is then:

Ṁ∗ =

{
Ṁ∗,tid t < tsev,

Ṁ∗,tid + Ṁ∗,sev t ≥ tsev.
(5.14)
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Figure 5.2: First generation (1g) of primary masses (red) and secondary masses (blue) of
BBHs given by the mass sampling used in Mapelli et al. (2021a) (left) and by the new
mass sampling used for this work (right), at metallicity: Z = 0.0002.

5.2.2 Comparison with N−body simulations

The relevant scales tsev, and MBH depend on the details of the stellar evolutionary pro-
cesses. In order to tune them to up-to-date stellar-evolution recipes, and to assess the
goodness of the cluster evolution given by fastcluster, we compared the evolution of
the stellar and BH component mass to that from the N−body simulations of GCs by
Arca Sedda et al. (in prep.).

Figure 5.1 shows the comparison between the N−body models and fastcluster.
For the stellar component, a value tsev = 3 Myr gives a good comparison for all the
simulations we considered. Our semi-analytic code is able to reproduce the initial change
of the slope in the stellar mass profile, as a consequence of wind mass loss and supernova
explosions.

MBH is the total mass of the central BH sub-system (Breen & Heggie 2013), which
powers the evolution of the cluster (see Sect. 5.2.1). For this reason, we set its initial
value to the total BH mass within the half-mass radius, at the moment of core collapse.
For the N−body models we considered, the BH mass fraction fBH ranges from 0.42 to
0.5. After core collapse, fastcluster can reproduce the slope of the evolution of the
BH due to the dynamical ejection of BHs. For our runs, we will set MBH by considering,
for each cluster, a BH mass fraction fBH = 0.45.

5.2.3 Globular cluster properties

In our model, each GC is defined by its total mass Mtot and half-mass density ρ. We draw
the total masses from a log-normal distribution with mean ⟨ log10Mtot/M⊙⟩ = 5.6 (Harris
1996). We assume a fiducial standard deviation σM = 0.4 for all star cluster flavours
(Mapelli et al. 2021a, 2022).

The densities at the half-mass radius are drawn from a log-normal distribution with
mean ⟨ log10 ρ/(M⊙ pc−3)⟩ = 3.7. We assume a fiducial standard deviation σρ = 0.4. For
each star cluster, we assume a core density ρc = 20 ρ. The escape velocity is calculated
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from the relation (Georgiev et al. 2009b,a; Fragione et al. 2020):

vesc = 40 km s−1

(
Mtot

105M⊙

)1/3 (
ρ

105M⊙ pc−3

)1/6

. (5.15)

We simulate only one BBH per each randomly drawn GC, thus not taking into account
possible BBH-BBH interactions. When star cluster evolution is not activated the lifetime
of the star cluster is set to 13.6 Gyr. When star cluster evolution is activated, the lifetime
of the star cluster is determined by the cluster evolution itself.

5.2.4 Hierarchical BBH mergers

First generation BHs

In this work, we study the BBH mergers in star clusters originating from first-generation
(1g) dynamical BBH, which form from either the dynamical interaction between three
single BHs or the exchange between a single BH and an existing BBH (Heggie 1975). We
draw the masses of first-generation BHs from catalogues produced with the population
synthesis code mobse1 (Mapelli et al. 2017; Giacobbo et al. 2018).

We adopt the rapid model by Fryer et al. (2012) for core-collapse supernovae, while
for (pulsational) PI supernovae we use the equations reported in the appendix of Mapelli
et al. (2020). This yields a minimum BH mass of ≈ 5M⊙ and a maximum BH that
depends on metallicity. We consider four metallicities: Z = 0.02, 0.006, 0.002, 0.0002,
which approximately correspond to Z⊙, 0.3 Z⊙, 0.1 Z⊙, 0.01 Z⊙. The maximum BH mass
obtained, for each metallicity, is 80M⊙, 60M⊙, and 30M⊙, respectively.

To generate 1g dynamical BBHs, we randomly draw the BH masses from the sample
of single BHs or BHs in loose binaries in the mobse catalogue. Then, we consider two
possible criteria for coupling the BH masses.

BH mass coupling

First, we refer to the mass sampling used in Mapelli et al. (2021a). In this case, the
mass of the primary m1 is uniformly sampled from the list of BHs, while the secondary
is sampled from the probability distribution function (O’Leary et al. 2016):

p(m2) ∝ (m1 +m2)
4, (5.16)

in the interval [mmin,m1) where mmin = 5M⊙. Hereafter, we will refer to this mass
coupling as to O16.

In this work, we also consider the mass sampling introduced in Antonini et al. (2022).
In this approach, the coupling rate for BHs is calculated from the formation rate of hard
binaries per unit of volume and energy, given by Heggie (1975):

Γ3b(m1,m2,m3, x) = n1n2n3Q(m1,m2,m3, x), (5.17)

where ni = n(mi) is the number density for BHs with mass mi. In this formalism, m1

and m2 are the masses of the BHs that form the binary, while m3 is the mass of the
interacting third body. The rate function Q (see eq. 4.14 of Heggie 1975) depends on the

1mobse is publicly available at https://gitlab.com/micmap/mobse_open.
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masses of the three BHs, on the binding energy of the binary, and on the inverse of their
mean internal energy (miσ

2
i )

−1, where σi is the component velocity dispersion. Because
massive objects at the cluster centre tend to reach a condition of energy equipartition, we
assume that β1 = β2 = β3.

The binary formation rate per unit volume as a function of the masses of the interacting
BHs can be calculated by integrating the rate function over all x from the hard-soft
boundary. The resulting formation rate (per unit volume) is (Antonini et al. 2022):

Γ3b(m1,m2,m3) ∝ n1n2n3
(m1m2)

4m
5/2
3√

(m1 +m2 +m3)(m1 +m2)
β9/2, (5.18)

and the probability density function for the mass of either m1 or m2 is (note that eq. 5.18
is symmetric with respect to their masses):

p1,2(m1,2) =

∫ mup

mlow

∫ mup

mlow

dm3 dm2,1 Γ3b, (5.19)

where mlow and mup are the lower and upper limit of the mass distribution. To generate
1g BBHs through this mass sampling, we randomly sample from the mobse catalogue
pairs of masses by using eq. 5.19. Then, we assign m1 (m2) to the maximum (minimum)
sampled masses. Hereafter, we will refer to this mass coupling as to H75.

Figure 5.2 shows the resulting mass couplings, at a metallicity Z = 0.0002. Dynamical
BBHs generated through the H75 coupling are skewed towards higher masses, as a con-
sequence to the tendency of dynamical interactions to pair up the most massive objects.
As a consequence, the primaries have always masses m1 > 10M⊙.

After generating the BH masses, we check that the BBH components are not ejected
by supernova kicks. The kick is calculated, like in Mapelli et al. (2021a), based on linear
momentum conservation:

vSN = vH05
⟨mSN⟩
mBH

, (5.20)

where mBH is the BH mass, ⟨mSN⟩ = 1.33M⊙ is the average NS mass (Özel & Freire
2016), and vH05 is randomly drawn from a Maxwellian distribution with root-mean square
265 kms−1. If the BBH components receive a kick larger than the escape velocity (eq.
5.15), we do not evolve the BBH.

The dimensionless spin magnitudes (χ1 and χ2) of the BHs are sampled from Maxwellian
distributions with root-mean square σχ = 0.05, 0.01, or 0.1. We draw spin directions
isotropic over the sphere, because dynamical interactions reset any spin alignments with
the orbital angular momentum of the binary system.

The BBH initial eccentricity is drawn from a thermal probability distribution (Heggie
1975):

p(e) = 2 e e ∈ [0, 1), (5.21)

and the semi-major axis is drawn from:

p(a) ∝ a−1 a ∈ [1, 103] R⊙. (5.22)

Since soft binaries are disrupted by dynamical interactions within the star cluster (Heggie
1975), we first check if the newly-generated binary is hard. If not, we generate a new
semi-major axis until we obtain a hard binary, which is then integrated.
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Table 5.1: Summary of the models.

ID 1g Ng Z σχ Evol. cases
Ong O16 ngng 0.0002 0.05 NoEv, Evol, Tidal
O1g O16 ng1g 0.0002 0.05 NoEv, Evol, Tidal
H1g H75 ng1g 0.0002 0.05 NoEv, Evol, Tidal

Column 1: Name of the model; column 2: coupling criterion of the BH masses (O16, H75); column 3:
coupling of the Ng secondary mass (ngng, ng1g); column 4: metallicity of first-generation BHs (Z =
0.0002, 0.002, 0.02); column 5: root-mean square value of the Maxwellian distribution of spin magnitudes
(σχ = 0.05, 0.1, 0.01); column 6: evolutionary cases for the stellar cluster (NoEv, Evol, Tidal).

Orbital evolution

Hard BBHs within the star cluster evolve as a consequence of both dynamical hardening
and gravitational wave emission. The evolution of their semi-major axis a and eccentricity
e can be described as (Mapelli et al. 2021a):

da

dt
= −2π ξ

Gρc
σ

a2 − 64

5

G3m1m2 (m1 +m2)

c5 a3 (1− e2)7/2
f1(e)

de

dt
= 2π ξ κ

Gρc
σ

a− 304

15
e
G3m1m2 (m1 +m2)

c5 a4 (1− e2)5/2
f2(e),

(5.23)

where c is the speed of light and (Peters 1964):

f1(e) = 1 +
73

24
e2 +

37

96
e4

f2(e) = 1 +
121

304
e2. (5.24)

In eqs. 5.23, σ is the 3D velocity dispersion, and ξ and κ are two dimensionless parameters,
calibrated with direct N−body simulations (Hills 1983; Quinlan 1996; Miller & Hamilton
2002; Sesana et al. 2006). Here, we assume ξ = 3 (Quinlan 1996) and κ = 0.1 (Sesana
et al. 2006). Equations 5.23 are composed of two terms. The first ones (da/dt ∝ − a2

and de/dt ∝ a) describe the dynamical hardening and the evolution of eccentricity via
Newtonian dynamical scatterings; the second ones (da/dt ∝ − a−3 and de/dt ∝ − a−4)
describe hardening and circularization via GW emission (Peters 1964).

Equations 5.23 are integrated until the BBH is ejected from the cluster, or it merges,
or the star cluster dies by evaporation, or we reach the Hubble time (which one of these
cases happens first). If the BBH is ejected from the cluster, fastcluster integrates only
the second terms of eqs. 5.23 (hardening and circularization by GW emission) until either
the BBH merges in the field or a Hubble time has elapsed (Mapelli et al. 2021a, 2022).

A binary is assumed to be ejected from the cluster when aej > aGW (Baibhav et al.
2020) where

aej =
2 ξ m∗

2

(m1 +m2)3
Gm1m2

v2esc
(5.25)

111



Hierarchical BBH mergers in globular clusters

is semi-major axis below which the BBH is ejected by dynamical recoil and:

aGW =

[
32G2

5 π ξ c5
σm1m2 (m1 +m2)

ρc (1− e2)7/2
f1(e)

]1/5
(5.26)

is the maximum semi-major axis for the regime of efficient orbital decay via GW emission.
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Figure 5.3: Populations of BBH mergers at different generations for the models Ong
(upper panels), O1g (middle panels), H1g (lower panels), for different evolutionary cases:
NoEv (left), Evol (centre), Tidal (right). Different colours show BBH mergers at different
generations.

Nth generation (Ng) dynamical BBHs

If the BBH merger time tGW is less than one Hubble time (13.7 Gyr), we estimate the
mass and spin of the merger remnant using the fitting formulas by Jiménez-Forteza et al.
(2017). Also, if the BBH merges inside its parent star cluster, we calculate the relativistic
kick magnitude vK using the fitting formula by Lousto et al. (2012). We assume that
the merger remnant remains inside its parent cluster if the relativistic kick magnitude
vK < vesc, where vesc is given by eq. 5.15. Otherwise, the merger remnant is ejected from
the parent cluster and cannot be involved in any further hierarchical merger.
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We assume that, even if the merger remnant is not ejected, it is kicked out in the
outskirts of the cluster. Thus, the BH must sink back to the core via dynamical fric-
tion before it can acquire new companions via three-body encounters or exchanges. The
timescale for this to happen is given by the dynamical friction timescale (Chandrasekhar
1943):

tDF =
3

4 (2π)1/2 G2 ln Λ

σ3

mng ρ
, (5.27)

where mng is the mass of the ng BH. After a time tDF, the BH has sunk to the core of the
cluster and can acquire a companion by exchange with an existing binary, on a timescale
(Miller & Lauburg 2009)

t12 = 3Gyr

(
0.01

fbin

) (
106 pc−3

nc

) ( σ

50 km s−1

)
(

12M⊙

mng + 2mBH

) (
1AU

ahard

)
, (5.28)

where fbin is the binary fraction, mng is the mass of the ng BH, nc is the number cen-
tral density of the cluster and ahard = GmBH/σ

2 is the minimum semi-major axis of a
hard binary system in the BH sub-system. The resulting timescale tdyn,ng for the merger
remnant to pair up dynamically with a new companion BH is tdyn,ng = tDF + t12. The
n-generation BBH will thus form at tng = tmerg + tdyn,ng, where tmerg = tcc + tGW is the
delay time of the first generation (1g) BBH. If tng is shorter than the Hubble time, we
start the loop again by drawing the secondary mass for the given primary mass (following
the same procedure described in Sect. 5.2.4) and integrating the second generation (2g)
BBH with eqs 5.23. We iterate the hierarchical merger chain until the merger remnant is
ejected from the cluster, or the cluster evaporates, or we reach the Hubble time.

At each generation, we sample the new secondary mass depending on the chosen mass
coupling. When the O16 mass coupling is considered, we sample the secondary mass from
eq. 5.16. In this case, we consider two possible approaches. First, we leave the possibility
that the second BH ranges from [mmin,m1,ng) (case ngng, as done in Mapelli et al. 2021a,
2022). Second, we limit to the case in which the secondary is always a 1g BH (case ng1g),
and m2 ∈ [mmin,max (m1,1g)). For the H75 mass coupling, we sample m2 from eq. 5.19,
by setting m1 to the mass of the ng primary (ng1g).

5.2.5 BBH merger rate

We evaluate the BBH merger rate following Mapelli et al. (2022):

R(z) =
d

dt(z)

∫ z

zmax

ψ(z′)
dt(z′)

dz′
dz′∫ Zmax(z′)

Zmin(z′)

η(Z)F(z′, z, Z) dZ, (5.29)

where t(z) is the look-back time at redshift z, ψ(z′) is the formation rate density at
redshift z′ for GCs, Zmin(z

′) and Zmax(z
′) are the minimum and maximum metallicity of

stars formed at redshift z′, η(Z) is the merger efficiency at metallicity Z, and F(z′, z, Z)
is the fraction of BBHs that form at redshift z′ from stars with metallicity Z and merge at
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redshift z, normalized to all BBHs that form from stars with metallicity Z. To calculate
the look-back time we take the cosmological parameters (H0, ΩM and ΩΛ) from Ade et al.
(2016).

Formation rate density

For the formation rate of GCs as a function of redshift, we assume the Gaussian distri-
bution:

ψGC(z) = BGC exp

[
−(z − zGC)

2

(2σ2
GC)

]
, (5.30)

where, in the fiducial model, zGC = 3.2 is the redshift where the formation rate of GCs
is maximum, σGC = 1.5 is the standard deviation of the distribution and BGC is the
normalization factor. This distribution is reminiscent of the one estimated by El-Badry
et al. (2019) (see also Rodriguez & Loeb 2018). In particular, the fiducial normalization
we adopt, BGC = 2× 10−4M⊙Mpc−3 yr−1, is consistent with both El-Badry et al. (2019)
and Reina-Campos et al. (2019b). The peak redshift zGC = 3.2 is calibrated on the
distribution of the ages of Galactic GCs, which peaks at z = 3.2 (Gratton et al. 1997,
2003; VandenBerg et al. 2013). We refer the reader to Mapelli et al. 2022 for more details
on the choice of these parameters.

Merger efficiency

The merger efficiency is the total number of BBHs of a given population that merge within
a Hubble time divided by the total initial stellar mass of that population (Giacobbo et al.
2018; Klencki et al. 2018). For dynamical BBHs, we estimate the merger efficiency in star
clusters as:

ηSC(Z) =
Nmerg, sim(Z)

Nsim(Z)

NBH(Z)

M∗(Z)
, (5.31)

where Nmerg, sim(Z) is the number of BHs simulated with fastcluster that merge within
a Hubble time for a given metallicity Z, Nsim(Z) is the number of BHs simulated with
fastcluster for a given metallicity Z, NBH is the total number of BHs associated
with a given metallicity (including the BHs we did not simulate with fastcluster)
and M∗(Z) is the total initial stellar mass for a given metallicity Z. Nmerg, sim(Z) and
Nsim(Z) are directly extracted from the simulations. We calculate M∗(Z) =

∑
MTOT(Z),

i.e. the sum of the initial total mass of all simulated star clusters with a given Z. We
derive NBH(Z) as the number of BHs we expect from a stellar population following a
Kroupa mass function between 0.1 and 150 M⊙, assuming that all stars with zero-age
main sequence mass ≥ 20 M⊙ are BH progenitors (Heger et al. 2003). In our definition,
Nmerg, sim(Z) includes even Ng mergers, while Nsim(Z) counts only 1g BHs. Hence, the
ratio Nmerg, sim(Z)/Nsim(Z) can be > 1 if hierarchical mergers are extremely efficient.

Metallicity evolution

Following Bouffanais et al. (2021a), we describe the metallicity evolution through the fit
given by Madau & Fragos (2017):

log ⟨Z/Z⊙⟩ = 0.153− 0.074 z1.34 (5.32)
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To describe the spread around the mass-weighted metallicity, we assume that metallicities
are distributed according to a log-normal distribution:

p(z′, Z) =
1√
2π σ2

Z

exp

{
− [log (Z(z′)/Z⊙)− ⟨ logZ(z′)/Z⊙⟩]2

2σ2
Z

}
, (5.33)

where
⟨ logZ(z′)/Z⊙⟩ = log ⟨Z(z′)/Z⊙⟩ −

ln(10)σ2
Z

2
. (5.34)

The standard deviation σZ is set to 0.3 (Mapelli et al. 2022). Equation 5.33 allows us
to estimate the term F(z′, z, Z) of eq. 5.29:

F(z′, z, Z) =
N (z′, z, Z)

NTOT(Z)
p(z′, Z), (5.35)

where N (z′, z, Z) is the total number of BBHs that form in GCs at redshift z′ with
metallicity Z and merge at redshift z, while NTOT(Z) is the total number of BBH mergers
with progenitor’s metallicity Z.

5.2.6 Description of the runs

We ran different sets ofN = 5×106 1g BBHs. In order to test the impact of the star cluster
evolution on the population of hierarchical mergers, we consider three cases: absence of
star cluster evolution (NoEv), star cluster evolution in isolation (Evol), and in presence
of a tidal field (Tidal). In the latter case, the galacto-centric distance is set to 8 kpc. To
highlight the impact of star cluster evolution, for each evolutionary case we set the initial
seed of our random generations, such that the same BBHs evolve in the same GCs.

5.3 Results
In the following, we will explore how star cluster evolution affects the population of
hierarchical mergers. Also, we will quantify how the BBH mass ratio affects the process
of hierarchical assembly, by comparing different coupling criteria.

For our comparison, we will focus on selected metallicities and spin distributions, which
best match GC observations and GW detections. As shown by Muratov & Gnedin (2010)
(see their Fig. 23), GCs display a bimodal metallicity distribution ([Fe/H] = −1.6, 0.6,
which coincide with Z = 0.0003 and Z = 0.003), with an overabundance of metal-poor
clusters. In the following, we will show the models with metallicity Z = 0.0002, which
roughly coincides with the main peak of the distribution. As for the spin distribution,
we will show the results for the models with σχ = 0.05, which is reminiscent of the spin
distribution inferred from GWTC-3 (Abbott et al. 2021e). Table 5.1 summarizes the
details of the models under consideration.

5.3.1 Impact of star cluster evolution

Figure 5.3 shows the populations of BBH mergers at different generations, for different
mass couplings and for different evolutionary cases. Independently of the mass coupling
considered, the main effect due to star cluster evolution is to quench the BH hierarchical
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Figure 5.4: Distributions of m2 (left) and mass ratios q (right), for the models Ong (upper
panels), O1g (middle panels), H1g (lower panels). Different colours show BBH mergers
at different generations.

116



5.3 Results

101 102 103 104

tmerg (Myr)

100

101

102

103

104

105

106
N

NoEv1g
2g
3g
>3g

101 102 103 104

tmerg (Myr)

Evol

101 102 103 104

tmerg (Myr)

Tidal

Figure 5.5: Distribution of merger times for the model OL1g_f1, for different evolutionary
cases: NoEv (left), Evol (centre), and Tidal (right). Different colours show BBH mergers
at different generations.

chain after the third generation. Only models where ngng BBH mergers are allowed can
produce 4g mergers, with an efficiency N4g/N1g ∼ 10−5. In contrast, when star cluster
evolution is not taken into account, the hierarchical process can continue up to the 5th
generation, with a 5g efficiency: N5g/N1g ∼ 10−5.

In our models, the hierarchical process is not affected by the tidal stripping from the
host Galaxy. The populations of BBH mergers in clusters that evolve in isolation and
in presence of a tidal field show almost identical behaviours, with slight differences due
to stochastic fluctuations (e.g., in the kick generation) of the simulations. This suggests
that the additional mass loss due to the tidal stripping (at the considered distance) plays
a negligible role. The quenching of the hierarchical process is thus mainly due to core
expansion as a consequence of two-body relaxation, which produces lower central densities
and, in turn, a less efficient hardening rate.

The BBH mass coupling criterion deeply affects the population of BBH mergers since
the first generation. In particular, the H1g case produces mass distributions that are
skewed towards larger masses, as a consequence of the tendency of dynamical interactions
(eq. 5.18) to couple the most massive BHs. In contrast, the O16 coupling criterion results
in a more uniform distribution of BBH merger masses. When only ng1g BBH mergers are
taken into account, the hierarchical chain stops at the third generation when an accurate
star cluster evolution is considered, independently of the coupling criterion considered.

5.3.2 Mass ratios

Figure 5.4 compares the distribution of secondary masses and the resulting mass ratios
for different mass couplings. The distributions of m2 strongly depend on the sampling
considered. In the H75 case, the distribution of secondary masses is skewed towards larger
masses with respect to the O16 coupling criterion. At the first generation, all the mass
ratio distributions show similar distributions, with an increasing trend towards larger
values. Also, the fraction of 2g BBH mergers with respect to 1g mergers is similar for all
the different couplings, N2g/N1g ∼ 10−1.

At the higher generation, distinct mass coupling criteria lead to very different mass
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Figure 5.6: Distribution of escape velocities vesc for the model OL1g_f1, for different
evolutionary cases: NoEv (left), Evol (centre), Tidal (right). Different colors show BBH
mergers at different generations. The grey dashed line displays the distribution of vesc for
all the GCs considered.

ratio distributions. For the H75 case, the sampling criterion again favours the coupling
between the most massive stars, and new secondary mass is likely to be m2 ∼ max(m1,1g).
Since m1,2g ∼ 2max(m1,1g), the second generation mass ratio distribution peaks at ∼ 0.5.
Still, at the third generation, the distribution of mass ratios ranges between 0.2 and 0.6.
The O16 sampling, in contrast, show similar mass ratio distributions at all generations,
since m2 is determined from eq. 5.16. In the ng1g case, the distribution shows a flatter
trend at the third generation, because mass ratios close to 1 can no longer be produced
as, in general, m1,3g ≳ max (m1,1g).

5.3.3 Relevant time and velocity scales

Figure 5.5 shows how star cluster evolution affects the distribution of merger times. At
the first generation, all the distributions display a peak at tmerg ∼ 500 Myr. For BBHs
that can merger in shorter timescales, the star cluster evolution plays a negligible role.
At longer timescales, the lower hardening rate within the core quenches the production
of BBH mergers by 20% already at the first generation.

One of the aspects that mainly affect the process of hierarchical mergers is the complex
interplay between the relativistic recoil kick at the BBH merger (see Sect. 5.2.4) and
the cluster escape velocity, which determines if the host cluster can retain the merger
remnant. Figure 5.6 displays the distribution of the initial vesc for globular clusters that
host mergers, at different generations. BBH mergers tend to be favoured by larger escape
velocities, which result from very dense and/or very massive star clusters (e.g., see eq.
5.15). Also, only star cluster with vesc ≳ 30 km s−1 can produce 3g BBH mergers.

5.3.4 Inferred BBH populations at z = 0

Figure 5.7 shows the primary BH mass distribution at redshift z = 0 obtained from
dynamical BBH mergers in GCs according to their merger rate, calculated as described in
Sect. 5.2.5. As a qualitative comparison, we show the posterior distribution inferred from

118



5.3 Results

10 4

10 3

10 2

10 1

100

PD
F

Ong O1gNoEv H1g

0 30 60 90 120 150
m1 [M ]

10 4

10 3

10 2

10 1

100

PD
F

GWTC3
All gen
Ngen < 3
Ngen = 1

0 30 60 90 120 150
m1 [M ]

Tidal

0 30 60 90 120 150
m1 [M ]

Figure 5.7: Probability distribution functions of primary BH masses of BBHs mergers
at redshift z = 0, for the models Ong (left), O1g (center), and H1g (right). Upper
panels: populations inferred from models without stellar evolution (NoEv). Lower panels:
populations inferred from models with stellar evolution in presence of Galactic tidal field
(Tidal). The purple solid line is the contribution of mergers of all generations, the green
dashed line is the contribution of mergers up to the 2g, and the yellow dot-dashed line is
the contribution from only 1g BBH mergers. The dashed black curve shows the posterior
population distribution inferred from GWTC-3 events (Abbott et al. 2021e), with the
shaded region showing the 90% credible interval. We arbitrarily re-scaled the inferred
PDF distributions.

GWTC-3 events (Abbott et al. 2021e). In particular, we estimated the populations of
BBH mergers at z = 0 in our synthetic Universe, without considering observation biases.
The main effect of hierarchical mergers is to extend the distribution of primary masses
at values larger than 60M⊙. Star cluster evolution quenches the inferred distributions in
the high mass regime. This is a consequence of the less efficient production of hierarchical
mergers due to the GC dissolution, as explained in Sect. 5.3.1.

The BH sampling criterion plays a relevant role in shaping the inferred distribution.
In general, all the sampling considered can reproduce the slope of the distribution from
GWTC-3 at high masses, where hierarchical mergers take over. The Ong and O1g cases
can reproduce the first peak at ≈ 10M⊙, and then display a monotonically decreasing
trend. Also, they match the distribution at the second peak (≈ 35M⊙).

The H1g case displays a more sub-structured distribution, with different peaks. This
coupling criterion cannot reproduce the first peak of the posterior distribution from GW
detections, because it favours the coupling of the most massive BHs. As a consequence,
mergers from low-mass BHs are disfavored. In contrast, the H1g case displays a main
peak due to 1g BBH mergers, which extends from ≈ 25M⊙ to ≈ 50 ,M⊙ and roughly
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Figure 5.8: Same as Fig. 5.7, but for the probability distribution function of mass ratios
of BBHs mergers at redshift z = 0.

encloses the one inferred from GW detections. A secondary peak due to 2g BBH mergers
is present at ≈ 70− 80M⊙. These results are consistent with those from Antonini et al.
(2022), who considered the same mass sampling criterion, but different (power-law) initial
BH mass functions.

Figure 5.8 shows the inferred distributions for mass ratios from dynamical BBH merg-
ers in GCs, at z = 0. The models based on the O16 sampling perform well in matching
the trend inferred from GWTC-3 at all values. In the Ong case, the distributions of mass
ratios at all generations are the same, because secondary masses are always sampled from
eq. 5.16 without any restriction. When only ng1g mergers are considered, successive-
generation mergers result in higher rates at low q, because higher values are quenched
by the growing mass of the primary BH. At high values, the H1g model shows a flatter
trend, and for q ≳ 0.8 we find a discrepancy of about one order of magnitude with the
detected trend, consistently with Antonini et al. (2022).

5.4 Summary

We have studied the process of hierarchical mergers in globular clusters, by considering
dynamically-formed BHs. To do this, we have implemented un upgraded version of our
semi-analytic code fastcluster, which includes all the relevant processes that drive the
cluster evolution, that is stellar evolution, two-body relaxation and tidal stripping by the
host galaxy.

The net effect of star cluster evolution is to reduce the cluster central density and
escape velocity, thus quenching the hardening rate of BBHs and the retention of BBH
merger remnants from recoil kicks. Our results suggest that star cluster evolution limits
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the maximum generation of BBH mergers to the third generation (3g). If the secondary
component of the BBH is a first-generation (1g) BH, the maximum mass yielded by
hierarchical mergers is at most ∼ 200M⊙ for Z = 0.0002.

Also, we quantified how the BH spins and the orbital angular momentum build up
to increase the spin at successive generations. The peak of the BH spin distribution is
χ1 = 0.7 for 2g BHs, and χ1 = 0.8 for 3g BHs, with a spread that depends on the 1g BH
spin distribution. This, in turn, has an impact on the distribution of the precessing spin,
which distribution displays an increasing trend that peaks at χp = 0.7, independently on
the intitial spin distribution.
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Chapter 6

Stellar-mass black holes in the Hyades
star cluster?

Based on the draft of the manuscript:
Torniamenti S., Gieles M., Penoyre Z., Jerabkova T., Wang L., Anders F.,
“Stellar-mass black holes in the Hyades star cluster?”, to be submitted to MNRAS.

Abstract

Understanding the natal kicks of stellar-mass black holes (BHs) is essential to
make reliable predictions for gravitational wave detections. Most models that try
to reproduce the binary-black hole merger rate require a significant fraction of BHs
to receive low or negligible kicks: in this case BHs should be retained even in star
clusters with low escape velocities (≲ 1 km/s), such as open clusters. In this study,
we search for signatures of stellar-mass BHs in the nearest open cluster to the Sun:
the Hyades. We compare the mass density profiles of a suite of direct N -body mod-
els to data from the Gaia space mission. The observations are best reproduced by
N -body models with 2− 3 BHs at present times. Models that never possessed BHs
have an half-mass radius that is ∼ 30% smaller than the observed value, while those
where the last BHs were ejected recently (≲ 150 Myr ago) can still reproduce the
density profile. In these model, the ejected (binary) BHs are at a typical distance
of ∼ 60 (80) pc from the Hyades (Sun). In 50% of the models hosting BHs, some
BHs have a stellar companion. Their period distribution peaks at ∼ 103 yr mak-
ing them unlikely to be found through velocity variations. We look for potential
BH companions through large Gaia astrometric and spectroscopic errors, identify-
ing 56 binary candidates and their inferred periods and mass ratios - none of which
are consistent with a massive compact object companion. We conclude that the
present-day structure of the Hyades requires a significant fraction of BHs to form
with low-enough kicks (vesc ≲ 3 km s−1 at 20Myr) to be retained by the host cluster.

keywords: black hole physics – binaries: general – star clusters: individual: Hyades
cluster – stars: kinematics and dynamics - methods: numerical

6.1 Introduction

The discovery of binary black holes (BBH) mergers with gravitational wave (GW) detec-
tors (Abbott et al. 2021d) has led to an active discussion on the origin of these systems
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(e.g. Belczynski et al. 2016a; Mandel & de Mink 2016; Rodriguez et al. 2016a; Samsing
et al. 2022). A popular scenario is that BBHs form dynamically in the centres of globular
clusters (GCs, e.g. Portegies Zwart et al. 2001; Antonini & Gieles 2020a) and open clus-
ters (OCs, e.g. Rastello et al. 2019; Di Carlo et al. 2019; Kumamoto et al. 2020; Banerjee
2021a; Torniamenti et al. 2022b). This scenario has gained support from the discovery
of accreting BH candidates in an extragalactic GC (Maccarone et al. 2007) and several
Milky Way GCs (Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al. 2015) as
well as the discovery of three detached binaries with BH candidates in the Milky Way
GC NGC3201 (Giesers et al. 2018; Kamann et al. 2020) and one in the 100 Myr star
cluster NGC1850 in the Large Magellanic Cloud (Saracino et al. 2022, but see El-Badry
& Burdge 2022).

Various studies have also pointed out that populations of stellar-mass BHs may be
present in GCs, based on their large core radii (Mackey et al. 2007, 2008); the absence
of mass segregation of stars in some GCs (Peuten et al. 2016; Alessandrini et al. 2016;
Weatherford et al. 2020); the central mass-to-light ratio (for the cases of Omega Centauri
and 47 Tucanae see Zocchi et al. 2019; Baumgardt et al. 2019; Hénault-Brunet et al. 2019);
the core over half-light radius (Askar et al. 2018; Kremer et al. 2020) and the presence of
tidal tails (see Gieles et al. 2021, for the case of Palomar 5).

Recently, Gieles et al. (2021) presented direct N -body models of the halo GC Palomar
5. This cluster is unusually large (∼ 20 pc) and is best-known for its extended tidal tails.
Both these features can be reproduced by an N -body model that has at present ∼ 20% of
the total mass in stellar-mass BHs. They show that the half-light radius, Reff , is a strong
increasing function of the mass fraction in BHs (fBH). Because all models were evolved
on the same orbit, this implies that the ratio of Reff over the Jacobi radius is the physical
parameter that is sensitive to fBH.

At the present day, all of the searches for BH populations in star clusters focused on
old (≳ 10Gyr) and relatively massive (≳ 104M⊙) GCs in the halo of the Milky Way and
there is thus-far no work done on searches for BHs in young OCs in the disc of the Milky
Way. The reason is that most methods that have been applied to GCs are challenging to
apply to OCs: for mass-to-light ratio variations, precise kinematics are required, which is
hampered by orbital motions of binaries (Geller et al. 2015) and potential escapers (e.g.
Fukushige & Heggie 2000; Claydon et al. 2017) at the low velocity dispersions of OCs
(few 100m/s).

In the last few years, the advent of the ESA Gaia survey (Gaia Collaboration et al.
2016, see Gaia Collaboration et al. 2022 for the latest release) has allowed us, for the first
time, to study in detail the position and velocity space of OCs (e.g., see Cantat-Gaudin
2022 for a recent review), and to identify their members with confidence. Several hundreds
of new objects have been discovered (e.g. Cantat-Gaudin et al. 2018b,a; Castro-Ginard
et al. 2018, 2020, 2022; Sim et al. 2019; Liu & Pang 2019; Hunt & Reffert 2021), and could
be distinguished from non-physical over-densities that were erroneously listed as OCs in
the previous catalogues (Cantat-Gaudin & Anders 2020).

The possibility to reveal the full spatial extension of OCs members has made it feasible
to describe in detail their radial distributions, up to their outermost regions (Tarricq
et al. 2022), and to study them as dynamical objects interacting with their Galactic
environment. In particular, OCs display extended halos of stars, much more extended
than their cores, which are likely to host a large number of cluster members (Nilakshi
et al. 2002; Meingast et al. 2021). Also, evidence of structures that trace their ongoing
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disruption, like tidal tails, has been found for many nearby OCs, like the Hyades (Reino
et al. 2018; Röser et al. 2019; Lodieu et al. 2019; Meingast & Alves 2019; Jerabkova et al.
2021), Blanco 1 (Zhang et al. 2020), Praesepe (Röser & Schilbach 2019), and even more
distant ones like UBC 274 (Piatti 2020; Casamiquela et al. 2022). This wealth of data
provides, for the first time, the required information to characterize the structure of OCs
in detail and, possibly, to look for the imprints given by the presence of dark components,
in the same way as done for GCs.

In this exploratory study, we aim to find constraints on the presence of BHs in the
Hyades cluster, the nearest - and one of the most widely studied - open clusters. We use
the same approach as in the Pal 5 study of Gieles et al. (2021), hence a good understanding
of the behaviour of Reff at the orbit of the Hyades is required, i.e. the model clusters need
to be evolved in a realistic Galactic potential. We explore the large suite of N−body
models by Wang & Jerabkova (2021), conceived to model the impact of massive stars (i.e.
the BH progenitors) on the present-day structure of Hyades-like clusters. By comparing
these models to the radial profiles of Hyades members with different masses from Gaia
(Evans & Oh 2022), we aim to constrain if a dark component is required.

The paper is organised as follows. In Section 6.2, we describe the details of the
N−body models and our method to compare them to observations. In Section 6.3, we
report the results for the presence of BHs in the Hyades. In Sect. 6.4 we report a discussion
on BH-star candidates in the cluster. Finally, Sect. 6.5 summarises our conclusions.

6.2 Methods

6.2.1 The Hyades cluster

The Hyades is the nearest open cluster to us, at a distance d ≈ 45 pc (Perryman et al.
1998). By relying on 6D phase-space constraints, Röser et al. (2011) identified 724 stellar
members moving with the bulk Hyades space velocity, with a total of mass 435M⊙ (Röser
et al. 2011). The tidal radius is estimated to be rt ≈ 10 pc, and the resulting bound mass
is ≈ 275M⊙ (Röser et al. 2011). Also, the cluster displays prominent tidal tails, which
extend over a distance of 800 pc (Jerabkova et al. 2021).

The Hyades cluster contains stars with masses approximately between 0.1 M⊙ and 2.6
M⊙. Röser et al. (2011) found that average star mass of the cluster is observed to decrease
from the center to the outward regions, as a consequence of mass segregation. Recently,
Evans & Oh (2022) performed a detailed study of the Hyades membership and kinematics,
with the aim to quantify the degree of mass segregation within the cluster. In particular,
they applied a two-component mixture model to the Gaia DR2 data (Gaia Collaboration
et al. 2018b) and identified the cluster and tail members with masses m > 0.12M⊙
(brighter than MG < 14.06). They assigned a mass value to each observed source by
means of a nearest-neighbour interpolation on the Gaia colour-magnitude space (BP− RP
vs. MG). Finally, they defined two components, named “high-mass” and “low-mass” stars,
based on a color threshold at BP− RP = 2, corresponding to 0.56 M⊙. The component
median masses are 0.95 M⊙ and 0.32 M⊙, respectively. These values were taken as nominal
masses for the two components.

As a consequence of mass segregation within the cluster, Evans & Oh (2022) showed
that this two-component formalism is needed to adequately describe the radial cumulative
mass profiles over the entire radius range and within the tidal radius. In particular, the

124



6.2 Methods

Best-fit Plummer model Stars within 10 pc
Low-mass High-mass Low-mass High-mass

M (M⊙) 117.3 207.5 71.9 170.5
rhm (pc) 8.10 4.88 5.67 4.16

Table 6.1: Left: Total mass (M) and half-mass radius (rhm) for the two components of
the best-fit Plummer model, from Evans & Oh (2022). Right: the resulting parameters
for the distribution of stars within 10 pc, given by the best-fit Plummer model, truncated
at rt = 10 pc.

mass distributions of the stellar components within the tidal radius are well described by
a superposition of two Plummer (1911) models. Table 6.1 reports the relevant parameters
of the best-fit Plummer model (Evans & Oh 2022). The estimated total mass and half-
mass radius of stars within 10 pc are rhm,l = 5.7 pc and Ml = 71.9M⊙ for the low-mass
stars and rhm,h = 4.16 pc and Mh = 170.5M⊙ for the high-mass component displays.

In this work, we will use the density profiles given by the best-fit Plummer models
reported in Tab. 6.1 as observational points to compare to our N−body models. For this
reason, hereafter we will refer to this best-fit profiles as to "observed profiles".

6.2.2 N-body models

We use the sample of N−body simulations introduced in Wang & Jerabkova (2021), which
aim to describe the present states of the Hyades cluster.

The simulations are generated by using theN -body code PeTar (Wang et al. 2020b,a).
The code can provide accurate dynamical evolution of close encounters and binaries. The
single and binary stellar evolution are included by using the population synthesis codes,
sse and bse (Hurley et al. 2000, 2002; Banerjee 2021b). The “rapid” supernova model
for the remnant formation and material fallback from Fryer et al. (2012), along with the
pulsation pair-instability supernova (Belczynski et al. 2016a) are used. In this prescrip-
tion, if no material falls back onto the compact remnant after the launch of the supernova
explosion, natal kicks are drawn from the distribution inferred from observed velocities of
radio pulsars, that is a single Maxwellian with σ = 265 km s−1 (Hobbs et al. 2005). For
compact objects formed with fallback, kicks are lowered proportionally to the amount of
stellar envelope that falls back (fb). In this case vkick,fb = (1− fb)vkick, where vkick is the
kick velocity without fallback. For the most massive BHs, which are formed via direct
collapse (fb = 1) of a massive star, no natal kicks are imparted. In this formalism, the
kick is a function of the fallback fraction, and not of the mass of the compact remnant.

A metallicity of Z = 0.02 was used. The tidal force from the Galactic potential is
calculated by the galpy code (Bovy 2015) with the MWPotential2014, which includes
a bulge, a disk and a halo.

Initial conditions

The sample of N−body models consists of 4500 star clusters, initialized with a grid of
different total masses M0 and half-mass radii rhm,0. The initial values for M0 are set to
800, 1000, 1200, 1400, or 1600 M⊙, while rhm,0 takes values 0.5, 1, or 2 pc. The initial
positions and velocities are sampled from a Plummer (1911) sphere.
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Figure 6.1: Distributions of χ2
ν from the fits to the density profile for star clusters with

different numbers of BHs. The filled area include the entire distributions of star clusters,
while the solid line displays the star clusters with 150M⊙ ≤ Mh ≤ 190M⊙. The vertical
lines show the median value of the distributions when all the clusters are considered
(dotted line) and when the mass cut is applied (solid line).

The cluster initial mass function (IMF) is sampled from a Kroupa (2001) IMF between
0.08− 150M⊙. For each couple [M0, rh,0], Wang & Jerabkova (2021) generate 300 models
by randomly sampling the stellar masses with different random seeds. On the one hand,
this allows to quantify the impact of stochasticity as the result of IMF sampling, which,
especially for such clusters with a limited number of particles play a fundamental role (e.g.
see Goodman et al. 1993; Boekholt & Portegies Zwart 2015; Wang & Hernandez 2021).
On the other hand, different random samplings result in different fractions of O-type stars
with m > 20M⊙ (the BH progenitors), which deeply affect the cluster global evolution
(see Wang & Jerabkova 2021). In the sample considered, the mass fraction of O-type
stars fO ranges from to 0 to 0.34 (the expected fraction for the chosen IMF is 0.13). The
stochasticity of the random sampling of stellar masses may produce fO = 0, that is the
cluster does not contain stars massive enough to form BHs at all. The percentage of
clusters with fO = 0 depends on the initial cluster mass, and varies from 6% for clusters
with M0 = 800M⊙ to 0.7% for clusters with M0 = 1600M⊙. In total, 2.4% of the clusters
do not host stars with m > 20M⊙. No primordial binaries are included in the simulations.

All the clusters are evolved for 648 Myr, the estimated age of the Hyades (Wang &
Jerabkova 2021). The initial position and velocity of the cluster are set to match the
present-day coordinates in the Galaxy (see Gaia Collaboration et al. 2018a; Jerabkova
et al. 2021). For this purpose, the centre of the cluster is first integrated backwards for
648 Myr in the MWPotential2014 potential by means of the time-symmetric integrator
in galpy. The final coordinates are then set as initial values for the cluster position and
velocity (Wang & Jerabkova 2021).
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Figure 6.2: Density profiles for high-mass stars (upper panels) and low-mass stars (lower
panels), for 16 models drawn from the cases with NBH = 0 (left) and NBH = 2 or 3
(right). The blue dashed lines are the individual models. The blue solid line is the
median of the distribution at selected radial distances, with the associated errors (the
Plummer uncertainties are comparable to those of the N -body models). The orange line
represents the observed profile (Evans & Oh 2022).

6.2.3 Comparing models to observations

We build the model density profiles from the final snapshots of the N−body simulations.
First, we center the cluster to the density center, calculated as the square of density
weighted average of the positions (Casertano & Hut 1985; Aarseth 2003b). Then, we build
the profiles for low-mass and high-mass stars within rt, separately. To be consistent with
the observed profiles (see Sect. 6.2.1), we define all the stars below 0.56M⊙ as low-mass
stars, and all the stars above this threshold as high-mass stars. Also, because we want
to compare to observable radial distributions, we only include the visible components of
the cluster (main sequence and giant stars), without taking into account stellar remnants
such as BHs. We divide the stellar cluster into radial shells containing the same number
of stars. Due to the relatively low number of stars, we consider Nbin = 10 stars per shell.

To assess how well the models reproduce the observed profiles, we refer to a chi-squared
comparison, where we define the reduced chi-squared (with an expected value near 1) as:

χ2
ν =

1

ν

∑
i

(ρobs,i − ρmod,i)
2

δρ2i
, (6.1)

where ν is the number of degrees of freedom, which depends on the number of density
points obtained with the binning procedure. The quantities ρobs,i and ρmod,i are the density
in the ith bin, for the observed and model profile respectively. The error δρ2i is given by
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the sum of the model and the observed bin uncertainties. For the both observed and
N−body profile, we determine the bin uncertainty as the Poisson error:

δρ =
m̄

4/3 π
(
r3f − r3i

)√Nbin, (6.2)

where m̄ is the mean mass of the bin stars, and r3i and r3f are the bin upper and lower
limit. For the N−body models, the bin lower (upper) limit is set as the position of the
innermost (outermost) star, and m̄ is the mean stellar mass in each bin. For the observed
profiles, we consider the same bin boundaries as the N−body models, and set m̄ as the
mass of the component under consideration. Then, we estimate analytically from the
Plummer (1911) distribution the number of stars between ri and rf .

Our comparison is performed by considering the high-mass density profile only. This
choice relies on the fact that the observed mass function in figure 2 of Evans & Oh (2022)
displays a depletion at low masses, which may hint at possible sample incompleteness
below 0.2 M⊙. We thus focus only on the high-mass range to obtain a more reliable
result. Also, high-mass stars, being more segregated, represent better tracers of the
innermost regions of the cluster, where BHs are expected to reside, and thus provide
more information about the presence of a possible dark component. We emphasize that
this is intended as a formal analysis with the objective of determining whether a model
is able to give a reasonable description of the observed cluster profile.

In order to filter out the simulations that present little agreement with the observa-
tions, we consider only the models with a final high-mass bound mass within ±20M⊙
from the observed value Mh = 170.5M⊙ (see Tab. 6.1). Among the simulated models,
636 clusters (14%) lie within this mass range.

6.3 Results

As the cluster tends towards a state of energy equipartition, the most massive objects
progressively segregate toward its innermost regions, while dynamical encounters push
low-mass stars further and further away (Spitzer 1987). BHs, being more massive than
most of the other stars, tend to concentrate at the cluster centre, quenching the segregation
of massive stars. As a consequence, their presence in a given star cluster is expected to
affect the radial mass distribution of the cluster’ stellar population (Fleck et al. 2006;
Hurley 2007; Peuten et al. 2016).

In the star cluster sample under consideration, the number of BHs (within 10 pc),
NBH, ranges from 0 to 5. Star clusters with NBH = 0 can result from the ejection of all
the BHs, because of supernovae kicks (50% of the cases) and/or dynamical interactions.
Our N−body models display initial escape velocities vesc ≲ 6 km s−1, which decrease to
vesc ≲ 3 km s−1 at 20 Myr. Thus, only BHs formed with almost negligible kicks can be
retained within the host cluster. Also, as mentioned earlier, the IMF may not contain
massive-enough stars to form BHs (12% of the models that end up with 0 BHs within the
mass cut, see Sect. 6.2.2).

In the following, we will assess if NBH ≤ 5 BHs can produce quantifiable imprints on
the radial distributions of stars.
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6.3.1 Chi-squared distributions

Fig. 6.1 shows the distributions of χ2
ν , for different NBH. If we apply the mass cut

introduced in Sect. 6.2.3, we can select most of the models with χ2
ν closer to the expected

value near 1, and remove those that are highly inconsistent with the observed profiles.
The result of our the comparison improves with increasing NBH, up to NBH = 4, which
however exist in only 1% of the cases. If we focus on the cases with a large number of
good fits (NBH ≤ 3), the median value of the reduced chi-squared distributions decrease
from χ2

ν ≈ 3 to χ2
ν ≈ 1 for NBH increasing from 0 to 3.

When only models within the mass cut are considered, 98% of the clusters have NBH ≤
3. This is mainly because star clusters that contain a high initial mass fraction in O-type
stars (which evolve into BHs) are easily dissolved by the strong stellar winds (Wang &
Jerabkova 2021), and result in present-day total masses far below the one observed for
the Hyades. If the initial mass fraction in O-type stars is more than two times higher
than that expected from a Kroupa (2001) IMF, our models cannot result in present-day
clusters in the selected mass range.

Table 6.2 reports the final total masses and BH mass fractions for different components
in the N−body models, and for different values of NBH. The total mass in high-mass
stars is ≈ 170M⊙, independently on the number of BHs, as a consequence of the chosen
criterion for filtering out models with little agreement with the observed cluster. Also
the total visible mass, Mvis ≈ 240M⊙, does not show any dependence on NBH, with the
only exception of the sample with 5 BHs. For the latter case, as mentioned earlier, the
initial larger mass fraction of O-stars brings about a more efficient mass loss across the
tidal boundary, and results in lower total stellar masses. In contrast, the total mass Mtot,
increases with NBH: the total BH mass spans from ≈ 10M⊙ (fBH = 0.04) if only 1 BH is
present, up to ≈ 45M⊙ for the case with 5 BHs (fBH = 0.16).

6.3.2 Two-component radial distributions

To highlight the difference in the fit performance between models with BHs and without
BHs, we randomly drew 16 models from simulations (which have already passed the mass
cut) with 0 BHs and from a sample obtained by combining the sets with 2 and 3 BHs.
For each distribution, we evaluated the median values for selected bins and the spread,
as 1.4×MAD

(√
Nbin

)−1, where MAD is the median absolute deviation.
Fig. 6.2 displays the density profiles of the high-mass (top) and low-mass (bottom)

components of these samples, compared to the observed profiles (see Sect. 6.2.1). The
density profiles of the N−body models are mostly consistent with the observed distri-
butions. Models with NBH = 0 display more concentrated distributions of high-mass
stars, due to the absence of a more massive component. For this reason, they tend to
overestimate the density in the innermost regions. The selected models also perform a
good description of the low-mass stars, although they were not considered in the fitting
procedure. This component presents central densities lower than high-mass stars of about
an order of magnitude, as a consequence of mass segregation within the cluster.

A better description of the relative concentration of stars with different masses (and
thus of the degree of mass segregation) is given by the ratio between their half-mass radii
(e.g., see Vesperini et al. 2013, 2018; de Vita et al. 2016; Torniamenti et al. 2019) Fig.
6.3 displays the ratios between high-mass and low-mass stars, for all the models with 0
BHs and with 2−3 BHs. For the latter, BHs suppress the segregation of the high-mass
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NBH Mvis (M⊙) Mh (M⊙) Mtot (M⊙) fBH fO M0 (M⊙) rh,0 (pc) Pcut

0 BHs 233.9+21.4
−22.1 170.5+12.3

−15.1 254.0+24.4
−24.1 0 0.09+0.06

−0.05 1016.1+194.5
−16.1 0.98+0.99

−0.48 13.8

1 BHs 242.5+21.0
−21.9 170.5+15.6

−10.7 274.1+22.5
−25.0 0.04+0.02

−0.01 0.12+0.06
−0.06 1201.4+200.3

−200.6 0.99+0.99
−0.49 13.6

2 BHs 241.2+21.8
−22.1 168.1+14.5

−11.1 280.2+22.9
−25.4 0.07+0.02

−0.02 0.15+0.05
−0.05 1401.4+200.3

−200.6 1.00+0.99
−0.50 14.2

3 BHs 242.7+27.6
−26.2 173.0+10.9

−18.0 289.6+30.8
−28.4 0.09+0.02

−0.01 0.15+0.05
−0.04 1400.5+195.5

−197.3 1.96+0.03
−1.27 16.8

4 BHs 249.3+14.2
−29.4 167.1+14.1

−7.2 294.5+23.7
−22.4 0.11+0.02

−0.01 0.17+0.03
−0.04 1400.5+195.3

−0.2 1.97+0.04
−0.71 27.2

5 BHs 216.7+25.5
−8.5 155.6+6.0

−3.4 281.4+18.8
−14.2 0.16+0.01

−0.02 0.18+0.02
−0.05 1598.5+0.3

−270.2 1.97+0.00
−0.02 27.2

Table 6.2: Properties of the Hyades models with 150M⊙ ≤ Mh ≤ 190M⊙, for different
values of NBH (column 1): total mass in visible stars (column 2), total mass of high-
mass stars (column 3), total mass (column 4), BH mass fraction (column 5), initial mass
fraction in O-type stars (column 6), initial total mass (column 7), initial half-mass radius
(column 8). The last column reports the percentage of models within the mass cut, for
the selected NBH. The reported values are the medians of the distributions, while the
subscripts and superscripts represent the difference from the 16% and 84% percentiles,
respectively.

stars, producing less centrally concentrated distributions and increasing their half-mass
radius. As a result, the sample with 2−3 BHs displays less mass segregation among the
visible stars with respect to models with 0 BHs. Also, the former case yields a much
better agreement with the observed value1.

6.3.3 Half-mass radii

Figure 6.4 shows the impact of the presence of BHs on rhm, defined as the half-mass
radius of all the visible stars. The distributions shift towards higher values for increasing
numbers of BHs, which is because rh is larger, but also because of the quenching of mass
segregation of the visible components. Our models suggest that 3 BHs can produce an
increase in the expected value of the half-mass radius for the visible stars of ∼ 40%. As
a further hint on the presence of a BH component, the observed value almost coincides
with the expected value for the case NBH = 3.

The distribution of rhm of the NBH = 0 sample is mostly inconsistent with the observed
value of the Hyades cluster. Unlike the other cases, this distribution shows a more asym-
metric shape, with a peak at rhm ≃ 3 pc, and a tail which extends towards larger values,
more consistent with the models hosting BHs. We investigated if this tail may come from
clusters that have recently ejected all their BHs, and have still memory of them. Figure
6.5 shows the the distribution of half-mass radii for the cases without BHs at the present
day. We distinguished between different ranges of tBH, defined as the time at which the
last BH was present within the cluster. The stellar clusters that have never hosted BHs,

1In this study, the half-mass radii are calculated from the distributions of the stars within rt, and do
not refer to the half-mass radii of the whole Plummer model.
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because they are ejected by the supernova kick or because there are not massive stars to
produce them (see Sect. 6.3), constitute the bulk of the distribution, and are inconsistent
with the observations.

The N−body models where all the BHs were ejected in the first 500 Myr show the
same distribution as those that have never hosted BHs. For these clusters, the successive
dynamical evolution has erased the previous imprints of BHs on the observable structure,
because the most massive stars had enough time to segregate to the center after the
ejection of the last BH. Finally, star clusters where BHs were present after 500 Myr (i.e.
the last ∼ 150 Myr) still preserve some memory of the previous BH population, and
display larger half-mass radii, in some cases consistent with the observed value. Since
the present-day relaxation time (Spitzer 1987) for our N−body models is trlx ≈ 45 Myr,
we find that the only models that have ejected their last BH less than 3 trlx ago have
preserved some memory of their previous presence.

BHs that were ejected from the Hyades in the last 150 Myr display a median distance
∼ 60 pc from the cluster (∼ 80 pc from the Sun). Only in two cases, the dynamical recoil
could eject the BH at a present-day distance > 1000 pc, while in all the other cases the
BH is found closer than 200 pc from the cluster center.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
rhm, h r 1

hm, l
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0 BHs
2 3 BHs
Hyades

Figure 6.3: Distribution of the ratio between the half-mass radius of the high-mass stars
(rhm,h) and that of low-mass stars (rhm,l), for star clusters with NBH = 0 (orange) and
NBH = 2− 3 (blue). The dashed vertical lines represent the medians of the distributions,
and the vertical black line displays the observed value for the Hyades (Evans & Oh 2022).
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Figure 6.4: Distributions of half-mass radii of visible stars for N−body models with
different NBH. The dashed vertical lines represent the medians of the distributions, and
the vertical black line displays the observed value for the Hyades (Evans & Oh 2022).

6.3.4 High-mass stars parameter space

As explained in Sect. 6.3.3, the presence of even 2− 3 BHs has a measurable impact on
the observable structure of such small-mass clusters. High-mass stars are most affected
by the presence of BHs, because they are prevented from completely segregating at the
cluster core. In Fig. 6.6 we show how the number of BHs within the cluster relates to
the total mass in high-mass stars (Mh) and to their half-mass radius (rhm,h). In this
case, we consider all the simulated models, without any restriction on the high-mass total
mass, and we show how the average number of BHs in the N−body models varies in the
Mh − rhm,h space.

The total mass in high-mass stars can be as high as 400 M⊙, while the half-mass
radius takes values from 1 to 8 pc. The most diluted clusters feature the lowest mass,
because they are closer to being disrupted by the Galactic tidal field. In contrast, models
with higher Mh are characterized by the fewest BHs, because of the absence of massive
progenitors, which enhance the cluster mass loss. As explained in Sect. 6.3.2, rhm,h grows
for increasing number of BHs at the cluster center. In the mass range of the Hyades, the
expected value of rhm,h when NBH = 3 is larger by almost ∼ 60% with respect to the case
with 0 BHs. The observed values of the Hyades (Evans & Oh 2022) lie in a region of
the parameter space between 2−3 BHs, a further corroboration of the previous results of
Sect. 6.3. Finally, higher numbers of BHs are disfavoured by our models, because they
predict an even lower degree of mass segregation for high-mass stars.
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Figure 6.5: Distributions of rhm for star clusters of the noBH sample. We distinguish
betweenN−body models where BHs have not formed because there were not stars massive
enough in the IMF (magenta, vertical dotted line), star clusters were BHs have been
ejected before 500 Myr (red filled area, vertical dash-dotted line), and star clusters were
BHs have been ejected after 500 Myr (yellow hatched area, vertical dashed line). The
black line displays the value derived from observations (Evans & Oh 2022).

6.3.5 Velocity dispersion profiles

We quantified the impact of a central BH component on the velocity dispersion profile.
To this purpose, we compared the same samples of 16 models with NBH = 0 and with
NBH = 2 − 3 as done for the density profiles (see Sect. 6.3.2). Figure 6.7 displays the
so-obtained velocity dispersion profiles, calculated as the mean dispersion over the three
components. The presence of 2−3 BHs produces a non-negligible increase of 40% in
the velocity dispersion in the inner 1 pc. The rise in dispersion is reminiscent of the
velocity cusp that forms around a single massive object (Bahcall & Wolf 1976). Such
a cusp develops within the sphere of influence of a central mass, which can be defined
as GM•/σ

2, with M• the mass of the central object and σ the stellar dispersion. For
M• = 20M⊙ and σ = 0.3 km/s we find that this radius is ∼ 1 pc, roughly matching the
radius within which the dispersion is elevated. Although a BBH of 20M⊙ constitutes
∼ 10% of the total cluster mass, the mass with respect to the individual stellar masses is
much smaller (factor of 20) compared to the case of an intermediate-mass BH in a GC
(factor of 104) or a super-massive BH in a nuclear cluster (factor of 106). As a result,
a BBH in Hyades makes larger excursions from the centre due to Brownian motions.
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From eq. 90 in Merritt (2001) we see that the wandering radius of a BBH of 20M⊙ in
Hyades is ∼ 0.15 pc. Although this is smaller than the sphere of influence, it is still a
significant fraction of this radius. Also, in presence of a BBH with massive components
(> 50M⊙) stars may tend to align their orbital angular momentum that of the BBH
(Mapelli et al. 2005). In our N−body models, however, where BBH components have
lower masses, stars show isotropic distribution with respect to the direction of the central
BBH angular momentum, independently of the distance from the cluster center. Thus,
no signature of angular momentum alignment is found. We therefore conclude that the
elevated dispersion is due to the combined effect of stars bound to the BBH, stars being
accelerated by interaction with the BBH (Mapelli et al. 2005) and the Brownian motion
of its centre of mass.

We calculated the total mass of the cluster by referring to the commonly used dynam-
ical estimation:

Mdyn ≃ 10⟨σ2
1D⟩Reff

G
. (6.3)

To be consistent with observational estimations, we defined σ1D as the line-of-sight velocity
dispersion of high-mass stars and the effective radius Reff as the radius containing half
the number of high-mass stars. We find a systematic bias between Mdyn and Mtot. In
particular, Mdyn always overestimates the total mass of the cluster of a typical factor
∼ 1.6 for NBH = 0 and ∼ 2 if NBH > 0. This is mainly due to the presence of unbound
stars that are still associated with the cluster, which velocities are enhanced by the tidal
heating (e.g., see also Oh & Evans 2020).

6.3.6 Tidal tails

Star clusters are subject to an evolutionary mass loss from stellar evolution and N−body
relaxation processes. The relaxation process may increase the kinetic energy of a star
sufficiently to be able to escape the cluster and find its own orbit in the Galactic potential.
Numerical simulations show that stellar escapers form a symmetrical S-shaped stellar
distribution of stars slowly drifting away from the cluster. Given the nature of the orbits
of tails members within the Galactic potential, along which they vary their velocity, the
distribution of stars in tidal tails is not uniform. As described by Küpper et al. (2010,
2012), there are so-called epicyclic overdensities whose properties and position in the tail
mainly depend on cluster mass and the Galactic potential.

Before Gaia DR2 it was not possible to detect tidal tails of OCs (e.g. Röser et al. 2019;
Meingast & Alves 2019). Further studies, for example Jerabkova et al. (2021) or Boffin
et al. (2022), showed that N−body models are essential for the search of the tidal tails of
OCs and for interpreting the recovered members. This is because tidal tails are large-scale
(100 − 1000 pc) structures dissolving into the Galactic stellar field making tail members
surrounded by stellar contaminants. Since the Gaia mission only provides radial velocity
values for bright stars (Cropper et al. 2018), the search for tidal tail members mostly
relies on on-the-sky projected parameters as proper motions which have complex shapes.
Despite the difficulties connected with the search for tidal tails of open star clusters, they
provide constraints on the evolution of the star clusters, but also its interplay with the
Galactic potential.

Wang & Jerabkova (2021) show that the details of the massive OB star population
affect the evolution of a cluster. This means that the initial conditions of star clusters
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Figure 6.6: Contour plot of the total mass (Mh) and the half-mass radius (rhm,h) of the
high-mass stars. The colormap encodes the local mean number of BHs in that region
of the parameter space. The orange star displays the values derived from observations
(Evans & Oh 2022).

cannot be constrained unless the initial content of massive stars is known. In this work,
we specifically compare the best-fit models with different BH content and study their tidal
tails. The overall tidal tail shape and its kinematics signatures are not sensitive on the
cluster initial conditions. We find no evidence that the BH content affects the phase space
distribution of the tails and the position of the epicyclic over-densities is not significantly
affected, as shown in Fig. 6.8. We notice the density profile of the tail varies from model
to model.

Future studies might specifically target the epicyclic over-densities in more detail and
establish their phase-space properties for mode models to provide large statistical grounds.
While the current observational data are not sufficient to provide such information (see
the bottom panel of Fig. 6.8), this will likely change with the future Gaia data releases
and the complementary spectroscopic surveys SDSS-V (Almeida et al. 2023), 4MOST (de
Jong et al. 2019) and WEAVE (Dalton et al. 2012).
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Figure 6.7: One-dimensional velocity dispersion profiles for 16 models drawn from the
cases with NBH = 0 (left) and NBH = 2− 3 (right). The blue dashed lines are the single
models. The blue solid line is the median of the distribution at selected radial distances,
with the associated errors.

6.4 Discussion: observational tests

6.4.1 BH companions

Three-body interactions within a stellar cluster strongly favour the formation of binary
systems, mainly composed of the most massive objects (Heggie 1975). As a consequence,
BHs tend to form binaries preferentially with other BHs, and when in binaries with a
lower-mass stellar companion, they rapidly exchange the companion for another BH (Hills
& Fullerton 1980). In general, the result is a growing BBH population in the cluster core
(Portegies Zwart et al. 2001). In OCs, however, given the limited number of BHs by the
initial low number of massive stars, a non-negligible fraction of BH-star binary systems
may form and survive.

Binary stars in dynamically-active clusters are expected to display semi-major axis
distributions that depend on the cluster properties. Soft binaries (with binding energy
lower than the average cluster kinetic energy) are easily disrupted by any strong encounter
with another passing star or binary. The upper limit for the semi-major axis is thus given
by the hard-soft boundary of the cluster:

amax =
Gm1m2

2 ⟨mσ2⟩ , (6.4)

where m1,2 are the masses of the binary components, and Eb = ⟨mσ2⟩ is the hard-soft
boundary (Heggie 1975). For an OC with σ ≈ 0.5 km s−1, the upper limit for a binary
composed of a black-hole (m1 = 10M⊙) and a star (m2 = 1M⊙) is of the order of
amax ∼ 10−1 pc.

When a hard binary is formed, it becomes further tightly bound through dynamical
encounters with other cluster members (Heggie 1975; Goodman 1984; Kulkarni et al. 1993;
Sigurdsson & Phinney 1993. Each encounter causes the binary to recoil, until the binary
becomes so tight that the recoil is energetic enough to kick it out from the cluster.
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Figure 6.8: The individual panels show histogram along the tidal tails in Y Galactic
coordinates rotated so that the VY component is horizontal. The panels 1-4 (from top)
show N-body simulations with (0,1,2,3) BHs, and the bottom panel shows Gaia data from
Jerabkova et al. (2021). Histogram bins were optimised using Knuth’s rule (Knuth 2006).
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NBH fBH−Star fBH−Remn. fBH−BH

1 BHs 0.78 0.22 0.0
2 BHs 0.15 0.02 0.83
3 BHs 0.02 0.07 0.91
4 BHs 0.07 0.07 0.86
5 BHs 0.2 0.0 0.8

Table 6.3: Fractions of binary systems hosting BHs, for different number of BHs within
10 pc (column 1). We distinguish between different types of BH companions, specifically
stars (column 2), white dwarfs or NSs (column 3), and BHs (column 4).

For this, the lower limit amin can be assumed to be the semi-major axis at which the
binary that produces a recoil equal to the escape velocity vesc. Following Antonini &
Rasio (2016b):

amin = 0.2
Gm1m2

v2esc

m2
3

m2
12m123

, (6.5)

where m3 = ⟨m⟩, m12 = m1 +m2, and m123 = m1 +m2 +m3. For an open cluster with
vesc ≈ 0.5 km s−1, m1 = m2 = 10M⊙ and m3 = 0.5M⊙, we obtain amin ∼ 10−5 pc (2 AU).
For a BH-star binary system (m2 = 1M⊙) amin ∼ 10−4 pc.

BHs in our N−body models, as expected, show a tendency to dynamically couple
with other objects, and form binary and triple systems. When NBH > 0, only in 6% of
the cases the BH is not bound in a binary or multiple systems. Even in models where
only 1 BH is present, the single BH tends to form binaries with (mainly) stars or other
remnants (white dwarfs of NSs). Fig. 6.9 shows the distribution of semi-major axes
and periods for binaries and triple systems of clusters with NBH ranging from 1 to 4.
Independently of NBH, most of the binaries display semi-major axes from 10−5 pc to 10−1

pc, consistently with our approximate calculation. When more than 1 BH is present,
dynamical interactions tend to favour the formation of BBHs. As reported in Tab. 6.3,
the fraction of BBHs represents by far the largest fraction of binary systems hosting BHs,
if more than 1 BHs is hosted by the cluster.

6.4.2 Binary candidates in the Hyades

In this section we present a search for possible massive companions to MS stars in the
Hyades. We identify binary candidates by searching for members with enhanced Gaia
astrometric and spectroscopic errors (following Penoyre et al. 2020; Belokurov et al. 2020,
and Andrew et al. 2022).

Selecting cluster members

We start with all Gaia DR3 sources with ϖ > 5 mas, RA between 62 and 72 degrees,
Dec between 13 and 21 and RUWE greater than 0 (effectively enforcing a reasonable 5-
parameter astrometric solution) - giving 5640 sources as shown in Fig. 6.10. We also apply
an apparent G-band magnitude cut of mG < 15 above which the astrometric accuracy of
Gaia starts to degrade rapidly due to Poisson noise. Analysis beyond this magnitude is
eminently possible, but for such a nearby population of stars this cut excludes a minority
of the cluster (even more so the likely binary systems, as binary fraction increases with
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Figure 6.9: Distributions of periods (upper panels) and semi-major axes (lower panels) of
the binary and triple systems hosting BHs, for N−body models with different numbers of
BHs. We distinguish between different types of BH companions, specifically stars (orange
dash-dot line, hatched area), white dwarfs or NSs (green dashed line), and BHs (black)

mass) and means that Gaia should have a near constant (∼0.2 mas, Lindegren et al. 2021)
precision per observation and thus allows uncomplicated comparison of sources.

To select cluster members we use the position, proper motion, and parallax to construct
an (unnormalized) simple membership probability:

pmember = e
−

∑
x

(
x−x0
σ′
x

)2

(6.6)

where
σ′2
x = σ2

x + σ2
AEN + σ2

x0
(6.7)

with x denoting each of the parameters of RA, Dec, µRA∗(= µRA cos(Dec)), µDec and ϖ.
σx is the reported uncertainty on each parameter in the Gaia catalog and σAEN is the
astrometric_excess_noise of the fit. x0 and σx0 are the assumed values and spread of
values expected for the cluster as listed in Tab. 6.4. The inclusion of the AEN ensures
that potentially interesting binaries, which may have a significantly larger spread in their
observed values and thus fall outside of the expected variance of the cluster, are not
selected against.

The value of pmember for stars in the field is shown in Fig. 6.11 from which we choose
a critical value of log10(pmember) = −1.75 giving 229 members which can be seen and
identified on the Hertzsprung-Russell diagram shown in figure 6.12.

Astrometric and spectroscopic noise

Following the method introduced in Andrew et al. (2022) we can use the astrometric and
spectroscopic noise associated with the measurements in the Gaia source catalog (which
assumes every star is single) to identify and characterize binary systems. This is possible
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for binaries with periods from days to years, as these can show significant deviations
from expected single-body motion. As Gaia takes many high-precision measurements the
discrepancy between the expected and observed error behavior is predictable and, as we
will do here, can be used to estimate periods, mass ratios and companion masses.

The first step is to select systems with significant excess noise. For astrometry, we can
use a property directly recorded in the catalog ruwe which stands for the renormalized
unit-weight error. This is equal to the square root of the reduced chi-squared of the
astrometric fit and should, for well-behaved observations, give values clustered around
1. Values significantly above 1 suggest that either the model is insufficient, the error is
underestimated, or there are one or more significant outlying data points.

Given that binary systems are ubiquitous (a simple rule-of-thumb is that around half
of most samples of sources host more than one star, see e.g. Offner et al. 2022) these will
be the most common cause of excess error, especially in nearby well-characterized systems
outside of very dense fields.

It is possible to compute a reduced-chi-squared for any quantity where we know the
observed variance, expected precision, and the degrees of freedom - and thus we can find
the RUWE associated with spectroscopic measurements as well. To do this we need
to estimate the observational measurement error, which we do as a function of the stars’
magnitude and color (as detailed in Andrew et al. 2022) giving σspec(mG,mBP−mRP ), the
uncertainty expected for a single measurement for each source. Thus we can construct a
spectroscopic renormalized unit-weight error, which we’ll call RUWEspec to use alongside
the astrometric which we’ll denote as RUWEast. These values are shown for Hyades
candidate members in Fig. 6.13.

Only a minority of Gaia sources have radial-velocity observations, which can be missing
because sources are too bright (mG ≲ 4, as seen at the top of the HR diagram), too dim
(mG ≳ 14, as seen at the bottom), in too dense neighborhoods, or if they are double-
lined (with visible absorption lines in more than one of a multiple system, as may be the
case with some likely multiple stars above the main-sequence). We use only systems with
rv_method_used = 1 as only these are easily invertible to give binary properties (Andrew
et al. 2022 for more details).

The particular value at which RUWE is deemed significant must be decided prag-
matically, and we adopt the values from Andrew et al. (2022) of RUWEast > 1.25 and
RUWEspec > 2, where the higher criteria for spectroscopic measurements stems from the
smaller number of measurements per star and thus the wider spread in RUWE. We select
sources satisfying both of these criteria as candidate Hyades binaries, giving 56 systems.

There are some sources that exceed one of these criteria and not the other, and these
are interesting potential candidates, but they cannot be used for the next step in the anal-
ysis. Using both (generally independent) checks should significantly reduce our number of
false positives. It is worth noting that radial-velocity signals are largest for short-period
orbits, whereas astrometric signals are largest for systems whose periods match the time
baseline of the survey (34 months for Gaia DR3). This both tells us about which systems
we might miss or might meet one criterion and not the other. It also gives the explanation
for one of the largest sources of contaminants in this process: triples (or higher multiples)
where each significant excess noise comes from a different orbit and thus the two cannot
be easily combined or compared.

If we know the RUWE and the measurement error, and assume that all excess noise
comes from the contribution of the binary we can invert to find specifically the contribution
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of the binary:
σb,spec =

√
RUWE2

spec − 1 · σspec(mG,mBP −mRP ). (6.8)

and
σb,ast = 2

√
RUWE2

ast − 1 · σast(mG) (6.9)

where the factor of 2 comes from the fact that Gaia takes one-dimensional measurements
of the stars 2D position.

Binary properties from excess error

The contributions in equations (6.8) and (6.9) can be mapped back to the properties of
the binary and inverted to give the period and (after estimating the mass of the primary)
the mass of the companion, as detailed in Andrew et al. (2022). For binary periods less
than or equal to the time baseline of the survey the period is approximately:

P =
2πA

ϖ

σb,ast
σb,spec

, (6.10)

and the mass ratio follows:
q3 − αq2 − 2αq − α = 0, (6.11)

where
α =

A

GMϖ
σ2
b,specσb,ast (6.12)

and A = 1 AU. M is the mass of the primary star which can be estimated via:

M = 100.0725(4.76−MG), (6.13)

where MG is the absolute magnitude of the star (Pittordis & Sutherland 2019). This is
only strictly relevant for MS stars - but all evolved systems in the Hyades are too bright
for Gaia spectroscopic measurements and thus will not be included in later analysis (with
the exception of WDs, which are too dim).

These equations assume the companion has negligible luminosity of its own. If this
assumption doesn’t hold then the period is slightly overestimated and the mass ratio (and
companion mass) are slightly underestimated (see Fig. 3 of Andrew et al. 2022 for more
detailed behaviour). The inferred properties of all 56 systems are shown in Fig. 6.14 and
recorded in Tab. 6.5.

There are some simple consistency checks we can apply to these results. Primarily we
know that astrometric measurements should only be discerning for binaries with periods
from months to decades (Penoyre et al. 2022) - thus any deep blue or deep red points are
likely spurious solutions - though there are only a handful that have erroneous seeming
periods.

As we are searching for significant-mass BHs it is interesting to interrogate the sources
with the highest values of q and Mc, but we should be careful as this is equivalent to
selecting those with the largest errors and thus possibly those most likely to truly be
erroneous (rather than caused by a binary). For example, the highest mass ratio (q > 1)
sources are amongst the dimmest (and thus least reliably measured) in the sample - these
could be physical, most likely white dwarf companions - but could also be random error.

141



Black holes in the Hyades cluster?

ϖ RA Dec µRA∗ µDec
x0 22 66.9 16.4 105 -25
σx0 7 3.2 3.2 35 30

Table 6.4: Values for ϖ, RA, Dec, µRA∗ , µDec, and their reported uncertainty in the Gaia
catalog.

The brighter stars that show evidence of companions have relatively modest properties
- mass ratios below 1 and companion masses significantly below those of a clear BH
companion.

Given the period constraints on binaries including BHs present in the simulations,
as presented in Fig. 6.9, it is not shocking that we do not find any likely companions.
We certainly cannot rule out that these or other stars in the Hyades might have massive
compact companions on smaller or wider orbits that Gaia would be insensitive to. Instead,
we are pleased to be able to present a list of candidate binaries whose companions are
most likely similar main-sequence stars or WDs.

Stars with massive companions may still be identifiable via their velocity offset. The
orbital velocity of a 1.5M⊙ star in a binary with a companion of 15M⊙ and a period
of 103(104) yr has an orbital velocity of ∼ 7(3) km/s. Searching for these systems from
velocity offsets is beyond the scope of this work but is an interesting avenue for future
exploration.

6.4.3 Implications for gravitational waves

Given the vicinity of the Hyades, it is interesting to ask the question whether a BBH in
the Hyades would be observable as a continuous gravitational wave source with ongoing
or future experiments. Let us therefore adopt a BBH with component masses of m1 =
m2 = 10M⊙, an average stellar mass of ⟨m⟩ = 0.5M⊙ and an escape velocity from the
centre of the cluster of vesc = 0.5 km/s. Then we assume that the semi-major axis is
a = amin = 2 AU, i.e. the minimum before it is ejected in an interaction with a star
(equation 6.4.1). This is the most optimistic scenario, because it results in the smallest
a, but since the interaction time between stars and the BBH goes as 1/a, a BBH spends
a relatively long time at this final, high binding energy. For an average energy increase
of 20% (Spitzer 1987) a binary spends approximately 20% of its life cycle in the highest
binding energy state. An estimate of the absolute duration can be obtained from the
required energy generation rate (Antonini & Gieles 2020c), from which we find ∼ 5Gyr.
Because this is much longer than the Hyades’ age, it is a reasonable assumption that a
putative BBH is near this highest energy state. For the adopted parameters, amin ≃ 2 AU.
For a typical eccentricity of ∼ 0.7, the peak frequency (∼ 5 × 10−4 mHz, equation 37 in
Wen 2003), i.e. below the lower frequency cut-off of LISA (∼ 0.1mHz) and the orbital
period of ∼ 0.7 yr is comparable to the maximum period that can be found by LISA
(∼ 0.7 yr, Chen & Amaro-Seoane 2017). Only for eccentricities ≳ 0.99 (2% probability
for a thermal distribution) the peak frequency is ≳ 0.1 mHz. BH masses (≳ 30M⊙) result
in orbital periods comfortably in the regime that LISA could detect (≲ 0.08 yr), but such
high masses are extremely unlikely given the high metallicity of the Hyades.

Perhaps a BBH might be observable with the Pulsar Timing Array (PTA). Jenet et al.
(2005) show that a BBH at a minimum distance to the sight line to a millisecond pulsar
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Figure 6.10: Position on sky (left) and proper motion (right) of sources in the field of the
Hyades (with ϖ > 5 mas). We show the parallax (top row) and angular offset from the
center of the cluster (bottom row). Aldebaran, a foreground star too bright for Gaia, is
shown as a red open circle. The size of each point is set by their apparent magnitude
and only sources with mG < 15 are shown (see Fig. 6.12 for reference). We also show an
angular offset of 3.2 mas (black circle, left) and lines denoting µRA∗ = 105 mas yr−1 and
±35 mas yr−1 from this (black vertical lines, right) and µDec = −25 mas yr−1 and ±30
mas yr−1 (black horizontal lines, right).
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Figure 6.11: The cluster membership probability for stars in the Hyades field based on
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position and proper motion distribution (middle two panels, similar to Fig. 6.10) colored
by log10(pmember), stars with values greater than -1.75 are shown with black outlines.
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Figure 6.12: Sky maps and color-magnitude diagrams for Hyades candidates, colored by
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any individual star can be traced between plots.
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Figure 6.13: Hyades candidates colored by astrometric (top) and spectroscopic (bottom)
renormalized-unit-weight-error (RUWE). Values significantly above 1 suggest that the
system has an extra source of noise, most ubiquitously a binary companion. Many sources
don’t have radial velocity measurements in the Gaia source catalog, and these are denoted
with empty grey circles in the bottom plot.
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Figure 6.14: Periods, mass ratios (q) and companion masses (Mc) of Hyades candidates
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(MSP) of 0.03 pc (∼ 3 arcmin for the Hyades’ distance) causes a time-of-arrival fluctuation
of 0.2-20 ns, potentially observable (van Straten et al. 2001). Unfortunately, the nearest
MSP in projection is PSR J0407+1607 at 5.5 deg2. If the BBH was recently ejected,
it may be close to a MSP in projection, but the maximum distance a BBH could have
travelled is ∼ 1 deg (Section 6.3.2) and there are only 4 pulsars within a distance of 10
deg, so this is unlikely as well. In conclusion, it is unlikely that (continuous) gravitational
waves from a BBH in or near the Hyades will be found.

6.4.4 Gravitational microlensing

Because of the vicinity of the Hyades, BHs have a relatively large Einstein radii and we
may detect a BH or a BBH through lensing. For a BH mass of 10M⊙ at a distance of
45 pc the Einstein angle is θE ≃ 42mas. Assuming that background stars in the galaxy
are distant enough to act as a source, we find from the Gaia catalogue that the on-sky
density of background sources is ΣS ≃ 10−9mas−2. The Hyades moves with an on-sky
velocity of vH ≃ 100mas yr−1 relative to the field stars. This gives us a rough estimate
of the microlensing rate of R ≃ NBHθEΣSvH ≃ 10−5 yr−1, where we used NBH = 2.
Unfortunately, the expected rate is too low. Even for a 103 higher density of background
sources (e.g. with LSST) we are in a regime that it is unlikely to detect dormant BHs
with microlensing.

6.5 Conclusions

In this study, we present a very first attempt to find dynamical imprints of stellar-mass
black holes (BHs) in Milky Way open clusters. In particular, we focused on the closest
open cluster to the Sun, the Hyades cluster. We compared the mass density profiles from
a suite of direct N−body models, conceived with the precise intent to model the present-
day state of Hyades-like clusters (Wang & Jerabkova 2021), to radial mass distributions
of stars with different masses, derived from Gaia data (Evans & Oh 2022).

Our comparison favorsN−body models with 2−3 BHs at present. In these models, the
presence of a central BH component quenches the segregation of visible stars, and leads
to less concentrated distributions. Star clusters with 3 BHs (and a BH mass fraction
fBH ≃ 0.1) best reproduce the observed value, while those that never possessed BHs have
an half-mass radius that is ∼ 40% smaller. This result is further confirmed by the radial
distribution of high-mass stars (m ≥ 0.56M⊙), which, being more segregated, are more
affected by the presence of central BHs. Models in which the last BH was ejected recently
(≤ 150 Myr ago) can still reproduce the density profile. For these model, we estimate
that the ejected (binary) BHs are at a typical distance of ∼ 60 pc from the Hyades.

In absence of primordial binaries, about 94% of the BHs in the present-day state of
our N−body models dynamically couple with other objects and form binary and triple
systems. Among them, 50% of the clusters with BHs host BH-star binary systems. Their
period distribution peaks at ∼ 103 yr making it unlikely to find BHs through velocity vari-
ations. We explored the possible candidate stars with a BH companion, based on their
excess error in the Gaia singe-source catalog but otherwise high membership probability.

2ATNF Pulsar Catalog by R.N. Manchester et al., at http://www.atnf.csiro.au/research/pulsar/psrcat
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6.5 Conclusions

We found 56 possible binaries candidates, but none which show strong evidence of suffi-
cient companion mass to be a likely BH. Also, we explored the possibility to detect binary
BHs through gravitational waves with Pulsar Timing Array. We found that (continuous)
gravitational waves from a BBH in or near the Hyades is unlikely to be found. Finally,
we estimated that detecting dormant BHs with gravitational microlensing is unlikely too.

Our study suggests that, at the present day, the radial mass distribution of stars
provides the most promising discriminator to find signatures of BHs in open clusters. In
particular, the most massive stars within the cluster, and their degree of mass segregation,
represent the best tracers for the presence of central BHs. For the case of the Hyades, its
present-day structure requires a significant fraction of BHs to form with kicks that are
low enough to be retained by the host cluster.

Our approach of detailed modelling of individual OCs can be applied to other OCs to
see whether Hyades is an unique cluster, or that BHs in OCs are common. Charting the
demographics in OCs in future studies will be a powerful way to put stringent constraints
on BH kicks and the contribution of OCs to gravitational wave detections.
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Chapter 7

Conclusions and outlook

In this thesis, I have explored the interplay between young stellar clusters and their pop-
ulations of binary stars, black holes (BHs), and binary black holes (BBHs). Specifically,
I have made use of advanced numerical models to study how the host cluster shapes the
properties of these populations and, in turn, how their presence affects the evolution and
the present-day state of the environment where they live.

First, I introduced a new approach to generate a number of star clusters from a given
set of stellar distributions (particle masses, positions and velocities) obtained from hydro-
dynamical simulations of collapsing molecular clouds (Torniamenti et al. 2022a), which
incorporate the observed complexity of star forming regions. My novel method relies
on applying a hierarchical clustering algorithm (Pedregosa et al. 2011) to inform a tree
representation of the cluster phase-space. This is then turned into new realizations by
modifying the initial branches of the tree (encoding the relations between the biggest
sub-clumps in the simulation). The new realizations display a different large scale struc-
ture, but share similar properties at smaller scales, preserving in particular the fractal
dimension of the original simulation. I have shown that the new generations yield a com-
parable evolution to the original cluster at different scales. This analysis suggests that
my method is a promising way to generate new mass and phase-space distributions from
existing hydro-dynamical simulations. The speedup in computation time is tremendous:
generating initial conditions from hydro-dynamical simulations requires about 1.5 × 105

core hours per simulation, while our procedure takes about 10 core seconds to train the
initial tree distribution and generate a new realization.

Second, I focused on the description of the early phases of the star cluster life. In
particular, I studied the impact of primordial binary populations on the early dynamical
evolution (t < 10Myr) of young stellar clusters. To do this, I generated initial conditions
that reproduce the observed phase-space distributions of star forming regions from hydro-
dynamical simulations. Then, I associated an observation-based primordial population of
binaries to these stellar distributions. My results show that the evolution of the cluster is
characterized by two distinct phases: first, the global expansion of the cluster is balanced
by the approaching of its main sub-clumps, while at small scales the cluster expands
instantaneously. When the cluster reaches a nearly monolithic shape, it expands as a
whole (Torniamenti et al. 2021). Primordial binaries tend to speed up the expansion of
the cluster in this phase, making the half-mass radius expand like in a post-core collapse
expansion. Also, they trigger the formation of a hot core, which temperature contrast can
grow enough to match the observed value for NGC 6530 (Wright et al. 2019).
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Conclusions and outlook

Primordial binary populations (Sana et al. 2012; Moe & Di Stefano 2017) are gen-
erally too hard to undergo dynamical exchanges. The stellar system recovers from the
lack of interacting binaries by dynamically creating additional binary systems with bind-
ing energy of the order of its kinetic energy. In the absence of primordial binaries, the
dynamically-formed binaries show a binary fraction that spontaneously reproduces the
trend with the primary stellar mass found in observations (Moe & Di Stefano 2017).

A second theme I largely addressed is the interplay between the host star cluster
and its BH population. First, I studied the dynamical formation of BBHs in young and
open star clusters via direct N -body simulations. I considered two different star cluster
families: low-mass (∼ 500− 800M⊙) and relatively high-mass star clusters (≥ 5000M⊙),
characterized by different degrees of dynamical activity. I found that the properties of
BBH merger populations are extremely different in the two sets. In low-mass clusters,
most BBHs mergers are the result of the evolution of original binary stars, which evolve
through common envelope. In contrast, in high-mass clusters dynamical exchanges are
effective also at late evolutionary stages (> 1 Gyr) for coupling and hardening BBHs
(Torniamenti et al. 2022b). This has an impact on the chirp mass distribution of BBH
mergers, which shows two main peaks: a main peak at ∼ 30− 40 M⊙, due to dynamically-
formed BBH mergers, and a secondary peak at ∼ 7− 15 M⊙. Finally, a non-negligible
percentage (8%) of the BBH mergers in high-mass clusters have primary component’s
mass in the pair-instability (PI) mass gap, all of them form via stellar collisions. About
80% of these massive BBHs leave a merger remnant in the IMBH range. Overall, this
study shows that the formation channels in dynamically-active star clusters are extremely
different from nearly-isolated environments and lead to two completely distinct BBH
populations. These differences are crucial for the interpretation of GW sources.

Also, I have studied the process of hierarchical mergers in globular clusters (Tornia-
menti et al., in prep.). To explore the relevant parameter space that this process requires, I
have implemented an upgraded version of the semi-analytic code fastcluster (Mapelli
et al. 2021a), by including all the relevant processes that drive the cluster evolution,
namely stellar evolution, two-body relaxation and tidal stripping by the host galaxy. My
results indicate that globular clusters can only host hierarchical BH mergers up to the
third generation, i.e. at least one generation less than what previously thought.

Finally, I explored the signatures that the presence of stellar-mass BHs leave in open
clusters, by considering the nearest open cluster to the Sun: the Hyades (Torniamenti
et al., in prep.). To do this, I compared the mass density profiles of a suite of direct
N -body models, conceived to model the present-day state of the cluster (Wang et al.
2016), to accurate radial profiles obtained from Gaia data (Evans & Oh 2022). In the
N−body models, the number of BHs within the cluster ranges between NBH = 0 and
NBH = 5. Star clusters with NBH = 0 result from either the ejection of all the BHs,
due to supernova kicks or dynamical scattering, or the absence of stars massive enough
to collapse into BHs. The number of BHs has an impact on the half-mass radius of the
cluster: more BHs produce less concentrated distributions of stars. In particular, models
that never possessed BHs have typically an half-mass radius that is ∼ 30% smaller than
the observed value. This feature is even more evident from the distribution of high-mass
stars (m > 0.56M⊙), which do not segregate completely at the cluster core because of
the presence of BHs.

The observed profiles of the Hyades are best reproduced by N -body models with ∼ 3
BHs at present, corresponding to a total mass fraction fBH ∼ 0.1. Also, models in which
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the last BHs were ejected recently (≲ 150 Myr ago) can reproduce the density profile. In
these models, the ejected (B)BHs are at a typical distance of ∼ 60 pc from the Hyades.
Our results suggest that the present-day structure of the Hyades requires a significant
fraction of BHs to form with low-enough natal kicks to be retained within the cluster.

In summary, this thesis added several pieces of information to the dynamical modelling
of young and open clusters and their binary stars, BHs, and BBHs. This provided a clue
on both our comprehension of the early evolution of young star clusters, and of the
formation channels gravitational wave sources. Also, I performed a first attempt to find
signatures of the presence of BHs in open clusters, from the impact that these objects
have on the distribution of visible stars. My work strongly supports the idea that the
interaction between dense stellar environments and their binary and BH populations plays
a fundamental role in shaping their mutual evolution. In turn, this leaves imprints that
we can now test with gravitational wave detections as well as observations of visible
distributions of stars in stellar clusters.

In perspective, the growing number of detected gravitational waves (Abbott et al.
2021d) - and the count is expected to increase at even faster rates thanks to the improved
sensitivity of the current ground-based detectors and to the advent of the next generation
ground-based interferometers (Punturo et al. 2010; Reitze et al. 2019) - will provide new
test-beds for our models on the formation channels of BBHs. As suggested by many
authors, about few hundreds of detections may be sufficient to say something on the
formation channels of BBHs, thanks to the distinctive imprints the produce (e.g. Fishbach
et al. 2017; Gerosa & Berti 2017; Stevenson et al. 2017; Bouffanais et al. 2019, 2021a,b.

At the same time, we have now the opportunity to combine this information with the
exquisite astrometric and photometric measurements offered by Gaia (Gaia Collaboration
et al. 2022) and ground-based spectroscopic surveys, like Gaia-ESO and the upcoming
WEAVE, 4MOST, MOONS (Gilmore et al. 2022; Dalton et al. 2012; de Jong et al. 2019;
Cirasuolo et al. 2014). This synergy will contribute to overcome the degeneracies that
still affect our models for BH formation. In particular, signatures of BHs in open clusters,
given their low escape velocities (≲ 1 km s−1), would provide important information about
low SN kicks for BHs. My study on the Hyades suggests that, at the present day, the radial
mass distribution of stars provides the most promising discriminator to find signatures of
BHs in open clusters. In particular, the most massive stars within the cluster, and their
degree of mass segregation, represent the best tracers for the presence of central BHs.
This approach can be applied to other open clusters to see whether Hyades is an unique
cluster, or that BHs in open clusters are common. Charting the BH demographics in open
clusters in future studies will be a powerful way to put stringent constraints on BH kicks
and the contribution of open clusters to gravitational wave detections.
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List of Figures

1.1 Images of a range of star clusters, along with NGC 1252, an object previ-
ously classified as a cluster but now known to be an asterism. Figure from
Krumholz et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mass-radius diagram of Milky Way open clusters, massive young star clus-
ters (here labelled as young massive clusters), and old globular clusters.
Gray dashed and dotted lines represent lines of constant half-mass density
(ρh = 3Mtot/(8πr

3
hm)) and relaxation time (trlx, see eq. 1.8), respectively.

Figure from Portegies Zwart et al. (2010). . . . . . . . . . . . . . . . . . . 4
1.3 Kinematics of subclusters in NGC 2264 (left) and the Carina OB1 associa-

tion (right). The crosses mark sub-cluster centers, and the vectors indicate
velocities of the sub-clusters, as indicated by the velocity scale. Sub-cluster
velocities in Carina tend to be much larger than in the smaller, nearby NGC
2264 region. In both NGC 2264 and Carina, nearby groups of stars tend
to move in similar directions, but there is no overall sign of sub-cluster
mergers. Figure from Kuhn et al. (2019). . . . . . . . . . . . . . . . . . . . 7

1.4 Multiplicity fraction fmult, here named MF (left; thick), triple/high-order
fraction (THF, left; thin), and companion frequency fcomp, here named CF
(right), of brown dwarfs and main sequence stars. The indicated spectral
types at the top roughly correspond to the mean primary masses of field
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