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Abstract

Two-body relaxation processes (collisions, that is star-star scattering) play a fun-

damental role in determining the structure and evolution of small stellar systems, like

globular clusters. In this thesis I focus on two consequences of collisionality, that is

energy equipartition and mass segregation, which are expected because globular clus-

ters are populated by stars of different masses. As a result of energy equipartition,

less massive stars should present greater velocity dispersions. Correspondingly, more

massive stars are expected to be characterized by a more concentrated density dis-

tribution, a phenomenon usually referred to as mass segregation. In self-gravitating

systems, the establishment of these processes is very complicated, because of their

inhomogeneous nature and their self-consistent dynamics. The tendency toward

equipartition may lead to interesting phenomena, only partially understood, that

depend in a subtle manner on local and global effects (see Spitzer 1987 [49]). In

particular, arguments have been provided in favor of the existence of an instability

related to mass segregation (Spitzer 1969 [48]; Vishniac 1978 [61]), distinct from the

so-called gravothermal catastrophe. Numerical experiments confirm this theoretical

expectation only partially, suggesting that globular clusters can attain a condition

of only partial energy equipartition (Trenti & van der Marel 2013 [58]; Bianchini et

al. 2016 [12]). On the observational side, the difficulties in checking these phenom-

ena by means of measurements with sufficient precision are being resolved by the

enormous progress made with the advent of GAIA mission.

In this thesis I consider a set of numerical realistic simulations realized by means

of Monte Carlo methods (Bianchini et al. 2016 [12]). Selected “snapshots” taken

from these simulations are studied as simulated states. The structural and kine-

matic properties of these systems are analyzed by means of two-component models.

For the purpose, I refer to isotropic King (1966) [34] models and to the truncated

f (ν) models (de Vita, Bertin, Zocchi 2016 [16]), conceived in the context of elliptical

galaxies formation, but later adapted to globular clusters. The two components

are light stars (collectively combining all main sequence stars) and heavy stars (gi-

ants, remnants, and binaries). This simplified dynamical framework allows me to

address the issue of partial energy equipartition and mass segregation with simple

analytic tools. I show that isotropic King models do not offer a good represen-

tation of these systems and, in particular, of their velocity distribution. On the

other hand, two-component truncated f (ν) models provide a reasonable description

of simulated density, velocity dispersion and anisotropy profiles, especially for the



most relaxed systems. Curiously, this also implies that the slow cumulative effects

of stellar encounters tend to generate anisotropic distribution functions similar to

those predicted by the completely different process of collisionless violent relaxation.

In this thesis I also provide a critical discussion of the so-called Spitzer “instabil-

ity” and of the related Vishniac criterion. I show that the application of these old

conjectures is jeopardized by the lack of global energy equipartition. In addition, I

show that the hypotheses at the basis of these conjectures are not well justified.

Finally, I address the issue of the local mass-to-light (M/L) ratio. The simple,

two-component truncated f (ν) models have difficulties in representing the exist-

ing (M/L) gradients, especially because significant gradients are associated with

main-sequence stars, which are characterized by a sizable mass-spread and resulting

segregation, whereas in the simple models main-sequence are lumped together into

the light component. Finally, I quantify how gradients in the M/L ratio and in

the mean mass profile influence the derivation of model parameters obtained in the

observations. I show that a description of the mass distribution by means of the

observed number density profile leads to an underestimate of the central density,

whereas measures of the surface brightness profile lead to an overestimate of the

concentration parameter.

This thesis is divided into three chapters. In the first chapter I introduce the main

properties of globular clusters, with particular attention to some recent discoveries,

and the effects of relaxation processes in these systems. In the second chapter I

describe the dynamical models considered later in this thesis in the study of energy

equipartition and mass segregation, focusing on two-components models. I also

discuss the Spitzer “instability”. In the third chapter I describe the basic properties

of a selected set of “snapshots” taken from realistic Monte Carlo simulations of

globular clusters and make specific tests about the presence of energy equipartition

and mass segregation in these systems. I then report the results of the fits performed

on the density and the velocity dispersion profiles for these simulated states by

means of one-component and two-component models. Finally, I describe how mass

segregation influences observations by comparing gradients of the M/L profiles of

the simulated states with those expected from the best-fit two component models.

vi



Chapter 1

Globular clusters

1.1 Basic phenomenology

Globular clusters are compact groups of up to about a million stars and beyond,

which are held together by their mutual gravitational attraction and are character-

ized by a nearly spherical spatial distribution. Our Galaxy hosts about 150 globular

clusters, of which more than one half are within 10 kpc of the Galaxy center, but

their distribution extends to much greater distances, well beyond 30 kpc [27]. The

most visible globular cluster from Earth is ω Centauri (NGC 5139), in the constel-

lation of Centaurus, with an apparent magnitude of V = 3.68. A photograph of this

system is shown in Fig. 1.1. The image appears nearly circular, which is typical for

globular clusters hosted by our Galaxy. If we define the ellipticity as ε = 1 − b/a,

where b and a are the minor and the major projected axis respectively, the distri-

bution of ε seems to peak at ε ≈ 0.05, with maximum values of ε ≈ 0.25 [27]. Thus,

to a first approximation, most globular clusters are nearly spherical: this symmetry

will be one of the key points of the dynamical analysis of these objects in Sect. 1.2.

1.1.1 Physical scales

Typically, globular clusters exhibit a declining surface brightness profile. In the

central regions the brightness is four orders of magnitude higher than in the outer

parts (halo). While most systems show a central region (or core) within which the

surface brightness changes slowly, in some systems it increases as we move in, down

to the smallest radius resolved. Systems such as NGC 6624 are said to possess

central cusps. This cluster is also one of the few that contain a strong X-ray burster

source, presumably formed in the innermost region of the cluster. The presence of

central cusps is probably connected with a process of core collapse, as described in

1



1.1. BASIC PHENOMENOLOGY

Figure 1.1: The globular cluster ω Centauri, with as many as ten million stars, in

an image captured with the WFI camera from ESO’s La Silla Observatory. The

image shows only the central part of the cluster — about the size of the full moon

on the sky (half a degree). This color image is a composite of B, V, and I filtered

images. Because WFI is equipped with a mosaic detector, there are two small gaps

in the image that were filled with lower quality data from the Digitized Sky Survey.

Image from www.eso.org.

Sect. 1.3.2.

Two length scales used to characterize the surface brightness profile are the core

radius rc, defined as the value of the radius at which the surface brightness is half

of its central value, and the tidal radius rt, at which the surface brightness vanishes,

that is, is no longer measurable. The truncation is physically interpreted as due to

tidal effects. For most globular clusters, rc is between 0.3 and 10 pc and rt/rc ranges

from 10 to 100. In ω Centauri rt ≈ 30± 2 pc [49].

The distribution of the total luminosities of globular clusters is strongly peaked at

a visual magnitude MV = −7.5, as illustrated in Fig. 1.2 (van den Bergh 2008 [59]).

This behavior is very different from that of another class of small stellar systems

called dwarf spheroidals (filled blue squares), the luminosities of which are spread

2



1.1. BASIC PHENOMENOLOGY

out over a range of 105. Another important difference between globular clusters and

dwarf spheroidals is that the effective radii Re, that is the projected radius that

contains half of the luminosity of the cluster (indicated as Rh in Fig. 1.2) of the

latter are typically one or two orders of magnitude larger than those of the former.

The distributions of globular clusters and dwarf spheroidals in the (Re,MV ) plane

can be separated by the line:

MV = 16.2− 14.26 logRe. (1.1)

This relation is referred to as the Shapley line.

Figure 1.2: The figure shows a clear-cut separation between the distribution of

Galactic globular clusters (filled red circles) and dwarf spheroidal companions to

the Galaxy (filled blue squares). A line separating these two types of objects is

given by Eq. (1.1) and is called Shapley line. Four luminous extended globular

clusters in the outskirts of M31 are shown as plus signs. The extended cluster

M33-EC1 is plotted as a cross. Figure from van den Bergh (2008) [59].

The total mass of globular clusters is generally estimated to be between 104 M�

and 106 M�.

1.1.2 Ages of globular clusters

Typically, ages of these systems are determined from their H-R diagrams, which

show virtually no main-sequence stars with spectra earlier than a “turn-off” point,

at which the stars leave the main sequence and evolve for the first time along the

3



1.1. BASIC PHENOMENOLOGY

Figure 1.3: This bright cluster is 47 Tucanae (NGC 104), shown in an image taken

by ESO’s VISTA (Visible and Infrared Survey Telescope for Astronomy) from the

Paranal Observatory in Chile. This cluster is located around 15 000 light-years away

from us and contains millions of stars, some of which are exotic. This image was

taken as part of the VISTA Magellanic Cloud survey, a project that is scanning the

region of the Magellanic Clouds, two small galaxies that are close to the Milky Way.

After ω Centauri this is the brightest globular cluster in the night sky, hosting tens

of thousands of stars. Image from www.eso.org.

giant branch. As time goes on, the position of the turn-off, at which the hydrogen

in the stellar core has been converted into helium, moves to stars of lower mass and

later spectral type. Thus, in principle, the position of this point on the observed

H-R diagram of a cluster can be used to determine the time since the stars, and

presumably the entire cluster, were formed. In practice, the age is determined by

fitting the points of each H-R diagram with one of a set of curves, computed with

detailed stellar models and different assumed ages. The globular clusters of our

Galaxy are estimated to be as old as about 10 Gyr. Therefore, these systems are

very old and were likely born in the first phases of galaxy formation, because their

ages are comparable with the age of the Universe. Consequently, globular clusters

can be considered as the first “building blocks” of galaxies, since they are among

the first recognizable stellar structures that were born on sub-galactic scales.

4



1.1. BASIC PHENOMENOLOGY

1.1.3 Binary stars

There is significant evidence that a substantial fraction of the stars populating

globular clusters are binaries [28]. Binary stars play a fundamental role in the

evolution of globular clusters for at least two important reasons. First, the evolution

of stars in binaries, whether in a cluster or in the galactic field, can be very different

from the evolution of the same stars in isolation. In a dense environment such as

a globular cluster, this difference is exacerbated by dynamical encounters, which

affect binaries much more than single stars. Secondly, binary stars crucially affect

the dynamical evolution of globular clusters, providing (through inelastic collisions)

the source of energy that supports them against gravothermal collapse, as we will

see in Sect. 1.3.2.

Information on the presence of binaries in globular clusters was initially provided

by X-ray observations. X-ray sources, in these systems, have a bimodal distribution

of luminosity Lx, with the bright ones having Lx between 3×1035 erg/s and 3×1037

erg/s, whereas for the fainter, more numerous group, Lx is less than 1034 erg/s.

The brighter sources are typically located within one core radius from the cluster

center whereas the weaker sources are more widely distributed in the clusters where

they are observed. The more luminous objects are interpreted as binaries, made

of a compact object (a neutron star), and a main sequence star. The discovery of

these sources was the first clear evidence for the presence of neutron stars as well as

binaries in globular clusters. The weaker sources are likely to consist of a degenerate

dwarf (with a mass somewhat less than that of the giants) as a compact emitting

object, and again a main sequence companion that provides the gas accreting onto

the X-ray emitting star.

Currently, it is possible to detect binaries in color-magnitude diagrams: unre-

solved binaries have similar colors to the other stars but are noticeably brighter.

Eclipsing binaries, that is binaries observed photometrically by changes in bright-

ness caused by an eclipse, were discovered later, many as by-product of searches for

gravitational lenses. In recent years it has become possible to find evidence for radial

velocity binaries, that is binaries observed spectroscopically by periodic changes in

spectral lines, among the normal stars that have not yet evolved into giants.

At present, there are very few direct measurements of binary fractions1 in clus-

1The binary fraction is the ratio of the number of binaries to the total number of objects (single

stars and binaries). It can be written:

fbinary = Nb/(Ns +Nb),

where Ns and Nb are the number of single stars and binaries, respectively.

5



1.2. DYNAMICS OF GLOBULAR CLUSTERS

ters. Observations of dense globular cluster cores typically yield binary fractions

that are significantly smaller than in the solar neighborhood (where the fraction

approaches 50%). Hubble Space Telescope (HST) observations of the core-collapsed

cluster NGC 6397 yield a binary fraction of ≈ 5% in the core and ≈ 1% beyond

the half-mass radius. For the non core-collapsed cluster 47 Tuc, the binary fraction

is ≈ 13%. The core binary fraction generally ranges from a few percent to tens of

percent, approaching 50% in some cases for less dense clusters [33].

For the primordial binary fraction in globular clusters, there are of course no

direct measurements. However, there are no observational or theoretical arguments

suggesting that the formation of binaries in dense stellar systems should be signifi-

cantly different from that in other environments such as open clusters, the Galactic

field, or star-forming regions. Observations of stars in low stellar density environ-

ments where dynamics are unimportant, such as the solar neighborhood, yield a

binary fraction of 50% among solar-type stars, with an increasing trend with pri-

mary mass. Open clusters show similar large binary fractions [21].

Most dynamical interactions in dense cluster cores tend to destroy binaries (the

possible exception is tidal capture, which may form binaries, but turns out to play

a negligible role). Soft binaries2 can be disrupted easily by any strong encounter

with another passing star or binary. Hard binaries can be destroyed in binary-

binary encounters, which typically eject two single stars and leave only one binary

remaining, or produce physical stellar collisions and mergers. In addition, many

binary stellar evolution processes lead to disruptions (e.g., following a supernova

explosion of one of the stars) or mergers (e.g., following a common envelope phase).

1.2 Dynamics of globular clusters

A quantitative discussion of the dynamics of globular clusters is generally based

on idealized models in which the effects of encounters between stars are ignored,

at least on time scales longer than the dynamical time and shorter than the the

relevant relaxation time. Deflections associated with encounters can be regarded

as perturbations that gradually induce cluster evolution along a sequence of these

quasi-equilibrium models. In all these discussions relativistic effects are ignored as

star velocities in these systems (a few km/s) are small compared to the speed of

2Theorists tend to distinguish between hard binaries and soft binaries. The former are binaries

with binding energies greater than the typical star energy, which generally become more tightly

bound (harden) as a result of encounters. The latter have binding energies smaller than the typical

star energy in a cluster, and typically become less tightly bound (soften) or dissociate completely.

6



1.2. DYNAMICS OF GLOBULAR CLUSTERS

light. The basic assumption made in such idealized models is:

(A) The granularity of the self-gravitating matter in the cluster can be ignored

on the time scale of several dynamical time scales, and the gravitational po-

tential can be taken as a slowly varying function of position (“mean potential

theory”). This assumption makes it possible to consider the existence of sta-

tionary equilibrium states.

Once the hypothesis A is considered, it is useful to define a velocity distribution

function f(r,v, t), dependent on the position vector r, the velocity v and the time.

This quantity is defined so that f(r,v, t)drdv represents the mass of stars at time

t within the volume element dr ≡ dx dy dz centered at r and within the velocity

space element dv ≡ dvx dvy dvz, centered at v. We can therefore define the mass

density function as:

ρ(r, t) =

∫
f(r,v, t)dv. (1.2)

In a discrete system, this quantity is meaningful if one can construct volume

elements that are large enough to contain many stars, but small enough so that

the relevant quantities are reasonably constant across each element. Under such

conditions, f(r,v, t) will be independent of the exact size and shape of the volume

element used. Actually, it is difficult to define the instantaneous f(r,v, t), even when

the total number of stars N in the cluster is as great as 106 if all six dimensions in r

and v are considered. This difficulty is reduced if, as we will assume, some symmetry

exists and fewer dimensions enter the argument of the distribution function.

1.2.1 Collisionless Boltzmann Equation

The basic relationship that determines the evolution of f in a collisionless system

is called collisionless Boltzmann equation or CBE (also known as Vlasov equation in

plasma physics) and may be derived from conservation of f in phase space. It states

that the one-star distribution function f(r,v, t) evolves in the six-dimensional phase

space under the action of the mean-field potential Φ(r, t) according to the continuity

equation of an incompressible fluid [7]:

∂f

∂t
+
∑
i

vi
∂f

∂xi
+
∑
i

ai
∂f

∂vi
= 0, (1.3)

where xi denotes one of the three coordinates and ai is the corresponding particle

acceleration (assumed independent of v). It is clear that Eq. (1.3) can be written as

Df/Dt = 0, that is f is constant along a dynamical trajectory. For all the systems

7



1.2. DYNAMICS OF GLOBULAR CLUSTERS

we shall study, ai is the result of a continuous (“mean”) gravitational potential Φ;

ai = − ∂Φ

∂xi
. (1.4)

We can also express f as a function of generalized coordinates and momenta in a

standard Hamiltonian formulation and Eq. (1.3) can be conveniently rewritten in

terms of Poisson brackets, much like the Liouville theorem (which generally applies

only to the 6N -dimensional phase space):

∂f

∂t
+ {f,H} = 0. (1.5)

Here H = p2/2 + Φ represents the specific one-star Hamiltonian associated with the

mean potential.

When weak collisionality is present, we may adopt the so-called Fokker-Planck

description, which has on the right-hand-side of Eq. (1.3) a collisional term [7]:(
∂f

∂t

)
c

=
∂

∂v

[
〈∆v

∆t
〉f
]

+
1

2

∂2

∂vi∂vj

[
〈∆vi∆vj

∆t
〉f
]
, (1.6)

where ∆v is the specific variation of velocity due to collisions. The first term of

Eq. (1.6) represents dynamical friction, and the second is a velocity-diffusion term.

Fokker-Planck equation has an important application in the dynamics of globular

clusters, in which the spherical geometry suggest a partitioning of phase space by

use of energy and angular momentum so that friction and diffusion terms in velocity

space are more conveniently reexpressed in the variables E and J [7] (see below).

To describe the system, we need to define the gravitational potential present in

Eq. (1.3) through Eq. (1.4), that is we need to define the relation between this

potential and the distribution function satisfying hypothesis A. If we deal with fully

self-gravitating systems, in which the mean potential is completely determined by

the stars described by f , Eq. (1.3) is supplemented by Poisson’s equation:

∆Φ(r, t) = 4πGρ(r, t) = 4πG

∫
f(r,v, t)dv, (1.7)

where ρ is defined by Eq. (1.2). In the self-consistent case, Eq. (1.3) and Eq. (1.7)

trace a highly nonlinear problem because Φ is not to be considered as an assigned

function but is determined by f . In the context of the dynamics of galaxies, the

preceding equations are often referred to as the fundamental equations of stellar

dynamics.

We can further simplify our idealized model by introducing two additional as-

sumptions:

8



1.2. DYNAMICS OF GLOBULAR CLUSTERS

(B) The gravitational potential Φ, the distribution function f , and the other prop-

erties of the system are independent of time.

(C) The cluster has spherical symmetry: Φ is a function of r only and f is a func-

tion only of r, vr, vt, the modulus of r, the radial and tangential components of

the velocity respectively. This assumption is not a priori necessary but greatly

simplifies the models and has a natural empirical justification, as suggested

by Fig. 1.1 and Fig. 1.3. In reality, a globular cluster is always subject to the

gravitational field of the host galaxy, which changes the shape of the cluster

from spherical to ellipsoidal, with a structure stretched in the direction of the

center of the galaxy, similarly to what happens in the case of terrestrial tides.

For simplicity, we may initially ignore these complications associated with the

external tidal field. The effect of the host galaxy is then quantified only by a

truncation radius rt, which is typically (but not necessarily) associated with

tidal effects. It is worth noting that the truncation due to tidal effects is

physically different from the picture of a system bounded by a reflecting wall.

As a result of assumption B, the energy of a star per unit mass, which we denote

by E, is constant, and the angular momentum J per unit mass is constant by virtue

of assumption C. We define the energy (per unit mass) and the magnitude of the

angular momentum (per unit mass):

E =
1

2
v2 + Φ(r), (1.8)

J = |r× v|. (1.9)

The function f is always constant along a dynamical trajectory, given assumption A.

In general, there are six integrals of motion that are constant along each dynamical

trajectory. It follows directly from Eq. (1.3) that f must be function of these

integrals, a result sometimes known as Jeans’ Theorem. This allows us to write f

as a function of the integrals of motion only. In spherical symmetry, self-consistent

models are generally discussed in terms of a distribution function that depends on

the energy and the magnitude of the angular momentum.

Poisson’s equation [Eq. (1.7)], as a consequence of spherical symmetry C, be-

comes:
1

r2

d

dr

[
r2dΦ(r)

dr

]
= 4πGρ. (1.10)

1.2.2 Moments of the distribution function

From the distribution function we can construct some fluid quantities, that is

quantities from which information in the velocity space is integrated out. An exam-

9



1.2. DYNAMICS OF GLOBULAR CLUSTERS

ple of a fluid quantity is the mass density defined in Eq. (1.2). We can also define

a mean fluid velocity u(r, t) = 〈v〉:

u(r, t) =
1

ρ

∫
vf(r,v, t)dv, (1.11)

and a pressure tensor pij:

pij = ρ〈(v− u)i((v− u)j〉 =

∫
(vi − ui)(vj − uj)f(r,v, t)dv. (1.12)

The pressure tensor can be expressed in terms of the velocity dispersion tensor

σ2
ij =

1

ρ

∫
(vi − ui)(vj − uj)f(r,v, t)dv, (1.13)

so that pij = ρσ2
ij.

For a standard fluid the velocity dispersion tensor is a scalar (i.e., σ2
ij = σ2δij):

this means that there is no preferential direction and the three Cartesian axes are

equivalent. At the same time, in a stellar system the velocity dispersion tensor may

not be proportional to the identity matrix and may be anisotropic. In general if the

distribution function depends only on energy (f = f(E), which is a consequence of

hypothesis B), the velocity dispersion tensor is always proportional to the identity

matrix and the system is isotropic. In fact, it is easy to show that in this case the

mean fluid velocity in Eq. (1.11) vanishes (u = 0) and, from Eq. (1.13):

σ2
ij = 〈(v− u)i(v− u)j〉 = 〈vivj〉 = σ2δij. (1.14)

If f depends also on J , the velocity dispersion tensor is anisotropic and:

σ2
ij =

σ
2
rr 0 0

0 σ2
t 0

0 0 σ2
t

 , (1.15)

with σ2
t = σ2

θθ = σ2
φφ. We note that there is no distinction between the directions θ

and φ, but only between the radial and tangential directions. For simplicity, in the

following we will use the notation σ2
r = σ2

rr, σ
2
θ = σ2

θθ, σ
2
φ = σ2

φφ.

The local degree of anisotropy in spherical stellar systems is generally quantified

by the local anisotropy function:

α(r) = 2−
σ2
θ(r) + σ2

φ(r)

σ2
r(r)

. (1.16)

The condition α = 0 corresponds to isotropy, whereas α = 2 corresponds to full

radial anisotropy.

10



1.2. DYNAMICS OF GLOBULAR CLUSTERS

1.2.3 Time scales

Before considering the dynamics of globular clusters we shall study the time

scales that characterize these stellar systems.

• Age of the cluster, tage.

• Dynamical time td (or crossing time). It is a measure of how long it takes to

a star to cross the stellar system and can be defined as the ratio between the

characteristic radius r of the orbit of a star and its typical velocity vs:

td =
r

vs
∼ 1√

Gρ
, (1.17)

where G is the gravitational constant and ρ is the density of the cluster (which

is, in general, not constant).

• Two-star relaxation time, tr. It quantifies the effects of star-star collisions in

changing the orbit of a star with respect to that determined by the smooth

mean field generated by the whole stellar system. It measures the effects of the

discreteness of the mass distribution. We can define the relaxation time as the

time scale beyond which the relevant aspect of the scattering processes becomes

significant in the course of the orbit of a reference star under consideration or,

alternatively, the time required for deviations from a Maxwellian distribution

to be significantly decreased. We report the definition of “time of relaxation”

given by Spitzer (1987) [49]:

tr =
0.065σ3

nm2G2 ln Λ
= 3.4× 109 [σ(km/s)]3

n(pc−3)[m(M�)]2 ln Λ
yr, (1.18)

where σ is the velocity dispersion, n is the numerical density, m is the mass

of stars (this definition assumes that all the stars of the cluster have the same

mass) and ln Λ is a constant, called the Coulomb logarithm. The relaxation

time in not constant inside a cluster, as it is function of velocity dispersion

and density, which are generally decreasing functions of the distance from the

cluster center. In particular, it is expected to be smaller in the central regions

of the system, where velocity dispersion rises, whereas in the outermost regions

tr can be as high as the age of the Universe.

For a globular cluster, a useful definition of central relaxation time is given by

the core relaxation time, trc. For the definition of this quantity, we follow the

approach of the Harris (2010) catalog [27], that contains basic parameters on
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1.2. DYNAMICS OF GLOBULAR CLUSTERS

distances, velocities, metallicities, luminosities, colors, and dynamical param-

eters for 157 objects classified as globular clusters in the Milky Way galaxy.

The core relaxation time is defined as [18], [44]:

trc =
8.3× 106yr

log (0.4N)

(
M�
〈m〉

)(
ρ0

M�/pc3

)1/2(
rc
pc

)3

, (1.19)

where N is the number of stars in the cluster, 〈m〉 is the average stellar and

ρ0 is the density of the cluster inside the core radius. A definition of the

relaxation time for a system as a whole is given by the half-mass relaxation

time, defined as [49]:

trh =
6.5× 108yr

log (0.4N)

(
M

M�

)1/2(
M�
〈m〉

)(
rh
pc

)3/2

, (1.20)

where M is the total mass of the cluster and rh the half-mass radius, that is,

the radius which contains half of the total mass of the system. The half-mass

relaxation time changes relatively little during the evolution of some clusters

and it is used as an estimation of the relaxation time of the whole system. By

contrast, the core relaxation time trc decreases markedly during evolution.

We can combine the definitions of crossing time, Eq. (1.17), for the half-mass

radius and of the half-mass relaxation time, Eq. (1.20), to obtain the scaling:

trh
td
∼ N

lnN
, (1.21)

which shows that large stellar systems are expected to be collisionless. For example

typical relaxation times for elliptical galaxies are trh ≈ 1014 yr and for disk galaxies,

even in central regions, the relaxation times typically exceeds 1010. The dynamical

time is often td ≈ 108 yr. The ages of galaxies are comparable with the Hubble time

(the age of the Universe), of the order of 1010 yr. For such systems td � tage � trh.

For globular clusters typical time scales are td ≈ 106 yr, trh ≈ 105−10 yr and tage >

1010 yr. This suggests that, in many cases, two-body interactions have had time to

lead the system toward thermodynamic equilibrium. If we want to understand the

present day structure of globular clusters we must consider the effects of long-time

collisions for these systems.

1.2.4 Perturbations and their effects

A steady-state spherically symmetric model may provide a first description of

the structure of globular clusters. The various effects neglected in these models
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1.3. GRANULARITY OF THE GRAVITATIONAL FIELD

may be regarded as small perturbations. During the orbital period of a star in a

cluster these effects are generally small, but over a period of many orbits they can

produce gradual changes that make the system evolve along families of neighboring

equilibria. We can also argue that such evolution leads to a state which may in

many respects be independent of the initial conditions.

Perturbations result from the following three main factors:

• granularity of the gravitational potential within the cluster.

• gravitational field produced by mass external to the cluster, especially by the

Galaxy.

• changes in the physical properties of the stars, as a result of stellar evolution

and of direct impact between stars.

We are interested in the first factor, the quantitative aspects of which are treated in

the following section (Sect. 1.3).

1.3 Granularity of the gravitational field

In a real cluster the gravitational field at any point will be constantly fluctuating.

These fluctuations can be seen as continuous small changes on the time scale required

for the nearest neighboring stars to pass by: this time interval is roughly that

required to travel a distance n−1/3, about the average distance between stars. There

will be slower fluctuations resulting from a slight random excess of stars within

regions where the total number of stars is large; these fluctuations have a relatively

small amplitude, but produce an appreciable effect because of their longer time scale.

Occasionally, there will be a transient fluctuation of larger amplitude as a star passes

by relatively closely. Finally, at high densities, three single stars may interact to

form a binary system, or a single star can interact with an existing binary. Close

encounters involving four or more stars are also possible.

If we do not consider binary stars, the main effect produced by all these fluctua-

tions in the gravitational field is to modify the stellar velocities, both in magnitude

and in direction. The rate at which stellar velocities are modified by such fluctu-

ations may be calculated by considering the velocity changes produced by a single

encounter between two passing stars and summing these changes over all such en-

counters. Encounters between three single stars are relatively unimportant in a

cluster. Moreover, close encounters between two stars, which produce relatively

large changes in the stellar velocities, are generally unimportant; the cumulative
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1.3. GRANULARITY OF THE GRAVITATIONAL FIELD

effect of many distant encounters, each producing only small changes in velocity,

is greater by at least an order of magnitude [49]. Gravitational field fluctuations

thus generate random walks in velocity space, characterized by mostly small step

sizes. As a result, there will be a net diffusion in velocity space, in the direction

of reducing existing deviations from this equilibrium, that is from the Maxwellian

distribution function:

f = A exp (−aE), (1.22)

where A is a constant and a is the temperature parameter a = m/(kBT ). When Eq.

(1.22) holds, the system is said to be in kinetic (thermal) equilibrium.

The tendency toward a Maxwellian distribution produced by random two-body

encounters has important consequences for the cluster. The possibility of finding

a star within an energy interval ∆E at a given energy E is proportional both to

exp(−aE) and to the volume of the phase space available for stars within ∆E:

P (E; ∆E) ∼ e−aE∆E. (1.23)

Hence one would expect that the tendency toward kinetic equilibrium would promote

evolution in two directions: toward more tightly bound gravitational systems, with

more negative E, and also toward expansion of the cluster volume, to increase the

available phase space. Since the total energy must remain constant, this implies

that some stars must move to higher energies to absorb the energy given up by the

contracting core. There are different mechanisms by which a cluster composed of

single stars evolves in the direction indicated by statistical arguments, that will be

described in the following sections.

1.3.1 Evaporation

Evaporation is the departure from the cluster of stars the velocity of which ex-

ceeds the local velocity of escape, ve. In a real cluster the tail of the Maxwellian

distribution, at energies exceeding the escape energy Ee, will be depleted as a con-

sequence of the tidal interaction with the host galaxy, but the fluctuations of the

gravitational field will tend continually to drive some stars up to energies exceeding

Ee, and these will quickly escape.

Evaporation can be studied in a simple spherical spatially truncated model by

arguing that, when collisions bring a star above a certain energy level, the star will

escape. In this context we can give a simple approximation for the tidal radius by

considering the Galaxy as a point mass MG situated at fixed distance rG from the
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cluster center. The tidal radius is given by:

r3
T =

Mc

3MG

r3
G. (1.24)

A star moving radially along the line joining the centers will escape from the cluster

if it can reach a distance from the cluster center greater than rT (i.e., if its energy

exceeds a certain value ET = Φ(rT )) while stars moving in other directions and

with some tangential velocities can remain bound with greater energies. This sug-

gests that mass loss from globular clusters proceeds primarily through stars along

radial orbits. As a consequence, the outermost parts of the system are expected to

develop tangential pressure anisotropy. Evaporation can also be studied in a more

realistic environment, in which the boundary of the system is defined by the three-

dimensional structure of the so-called Roche lobe associated with tidal interaction

[8].

Mass loss due to evaporation may be very significant: this process drives the

system toward a less concentrated structure delaying core collapse (see Sect. 1.3.2)

and, in some cases, it could lead to the disruption of the system itself. This process is

expected to be stronger for low-mass clusters, as they have shorter relaxation times

and thus evolve more quickly than massive clusters (Eq. (1.21)) and for clusters close

to the Galactic Center, as confirmed by N -body simulations (Heggie & Vesperini,

1997 [30]).

1.3.2 Gravothermal catastrophe

In the 1950s, the study of self-gravitating isothermal spheres led to the discovery

that gravity can produce a major change the Boyle law for isothermal configurations

of ordinary gases at a given temperature. In particular, it was found that in the

presence of self-gravity, for small values of the total volume V , the hyperbola char-

acteristic of the Boyle law changes into a curve that spirals into a point in the plane

(V , pext), as shown in Fig. 1.4. Equilibrium configurations are possible only up to

a maximum value of pext. All the points of this spiral along this line of isothermal

self-gravitating equilibrium configurations beyond the point of maximum external

pressure turn out to be unstable toward collapse.

This process was soon interpreted in terms of a heat flux that may originate from

the innermost regions, dominated by self-gravity and associated with a negative

specific heat, to the tenuous outer regions. According to the virial theorem, a self-

gravitating isolated system has a total energy Etot given by:

Etot = −K =
W

2
, (1.25)
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Figure 1.4: Isothermal equilibrium configurations for a self-gravitating system. For

small values of the volume V , the equilibrium curve spirals around a point: equi-

librium is possible up to a maximum value of pressure. All the equilibrium con-

figurations on the spiral are unstable against gravitational collapse. Figure from

Lynden-Bell & Wood (1968) [37].

where K is the total kinetic energy of the system and W is the total gravitational

energy. From Eq. (1.25) we can see that, if the system loses energy (Etot is negative,

so its absolute value increases), W becomes more negative and K increases: the

system becomes hotter as it loses energy and cools as it is heated (the system has

negative specific heat). If such a bound system is in thermal contact with a heat sink

(a colder system) at some constant temperature, an instability can result with heat

flowing into the sink and the kinetic energies of the particles in the gravitationally

bound system increasing steadily as the system contracts, losing energy. Within a

single cluster this process can be important if the central core is so concentrated

compared with the rest of the system that its dynamical equilibrium is practically

that of an isolated system. The core is in thermal contact with the outer regions

of the cluster, which can serve as a heat sink. Thus, it is possible for the core to

lose energy to the outer regions, contract and heat up in the process. The increase

of mean square random velocity in the core then encourages additional flow of heat

from the core to the surrounding regions, increasing the rate of core collapse [49].

The above scenario of a gravothermal catastrophe gained much popularity in

the context of stellar dynamics and, in particular, in the study of globular clusters.

In fact, some of these relatively small stellar systems possess the desired degree of

collisionality that is generically thought to be required for the phenomenon to occur

(as far as the innermost regions are considered). In addition, some globular clusters,

with relatively short relaxation times, are observed to possess a central cusp, distinct
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from the core structure associated with the King models (introduced in Sect. 2.1.3).

These clusters are naturally interpreted as systems that have suffered core collapse

as a result of the gravothermal catastrophe [7]. However, we must keep in mind that

globular clusters are truncated by tides in a way that is physically different from the

picture of a sphere bounded by a reflecting wall. Therefore the application of the

original discussion to stellar systems is not straightforward. As an example, Sormani

& Bertin (2013) [47] observed that, by performing a linear modal analysis of an ideal,

inviscid fluid model (assuming infinite thermal conductivity and isothermality), it

is possible to prove that the onset of Jeans instability occurs exactly at the same

point identified in the thermodynamical approach. The time scale for the instability

has been found to be the dynamical time scale: there is a correspondence between

the stability in the dynamical approach (in this context the nature of collapse is

dynamical and not secular) and in the thermodynamical approach. This result

strengthens the view that the applicability of different idealized models to describe

the process of core collapse in systems made of a finite number of stars is more

subtle than commonly reported.

Gravothermal oscillations

Direct N -body simulations ([28],[29]) show that, on the collisional time scale,

core collapse can develop and it is eventually halted by binaries. Binaries can yield

energy to the core in different ways: through the creation of binaries in three body

interactions (three-body binaries) or in dissipative encounters between two single

stars (tidal-capture binaries) or through binary-binary interactions. It seems that

when the density in the core is high enough, binaries become active and start yielding

energy to the core, in particular through binary-binary encounters of primordial

binaries (binaries formed along with the single stars at the birth of the stellar system)

that are expected to have accumulated in the core as consequence of mass segregation

(Sect. 1.3.4). The total energy that binary-binary interactions in the core can release

can be estimated to be of the order of fbinaryGNcm
2/a, where fbinary is the binary

fraction, Nc is the number of objects in the core, m are the individual stellar masses

and a is the semi-major axes. This is sufficient to halt the core if it exceeds the

energy released by the core on its collapse time scale, which is in turn of the order

of the energy of the core itself, ∼ Ncmσ
2
c , where σ2

c is the velocity dispersion inside

the core. Thus the collapse is halted if

fbinary
Gm2/a

mσ2
c

> 1. (1.26)

As a consequence of the energy produced by binaries, the core energy becomes
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less negative and it starts to expand (this is somehow similar to what happens to

stars as they settle on the main sequence). During this core bounce, the thermal

energy generated builds up in and around the core faster than it can be conducted

away. This causes an expansion and cooling of the core and its immediate surround-

ings, because of the negative specific heat. If core collapse is sufficiently deep, the

expanding core can actually cool to temperatures below that of its surroundings.

At this point there is a temperature inversion, i.e. there is an inner region in which

the temperature increases with radius (as shown in Fig. 1.5). At this stage, the

Figure 1.5: Velocity dispersion (“temperature”) profile in a gas model undergoing

gravothermal expansion. As shown in N -body simulations [29], one of the character-

istic signs of gravothermal expansion is the occurrence of a temperature inversion,

that is, a region in which dσ/dr > 0, where σ(r) is the velocity dispersion at distance

r from the center of the system. From Heggie et al. (1994) [29].

warmest part of the system is outside the core, and this loses heat to both the core

and the outer part of the entire system. The flux enhances the expansion of the

core and its cooling, which reinforces the driving force behind the expansion (it is

the gravothermal instability again, this time working in reverse). Eventually, the

expanding core comes in thermal contact with the cooler parts of the cluster. When

this happens, a normal distribution of temperature (decreasing monotonically from

the center to the outside) is restored, and collapse of the core sets in once again. But

this collapse is more-or-less like the first core collapse: the core overshoots, creates

too much energy, and a temperature inversion, and the cycle recurs. This picture

describes what are called gravothermal oscillations [28], represented in Fig. 1.6.
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Figure 1.6: Period doubling and chaos in post-collapse expansion. Central density

is plotted against time (in units of the initial half-mass relaxation time, with origin

shifted to the time of core bounce) for models with N = 6000 (top left), N = 8000

(bottom left), N = 10000 (top right), N = 50000 (bottom right) particles. Image

from Heggie & Hut (2003) [28].

1.3.3 Energy equipartition

In a realistic picture in which globular clusters are made of stars with differ-

ent masses, another consequence of the granularity of the gravitational field is a

tendency toward equipartition. We expect that, because of collisions, stars with

different masses tend to erase their kinetic energy differences and reach a condi-

tion of thermodynamical equilibrium in which their temperatures (the mean kinetic

energies) are constant. If we consider two generic components i and j, energy

equipartition can be expressed as isothermality between them (Ti = Tj):

miσ
2
i = mjσ

2
j , (1.27)

where mi, mj are the masses and σ2
i , σ

2
j are the velocity dispersions associated with

the i-th e j-th component. Velocity dispersions, as defined in Eq. 1.13, are local

quantities, that is evaluated at a certain point (i.e., a certain distance r from the

center in the case of spherical symmetry), and Eq. (1.27) expresses a condition of
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local equipartition in which the two populations have locally the same temperature.

However, we might define a global velocity dispersion Σ2, relative to the whole

system or to a part of it (e.g., to the sphere of radius ra), starting from the definition

of kinetic energy K = (1/2)MΣ2. In the case of spherical symmetry, the global

velocity dispersion inside ra for the i-th component is defined as:

Σ2
i (ra) =

2K(ra)

M(ra)
=

∫ ra
0
ρi(r)σ

2
i (r)4πr

2dr∫ ra
0
ρi(r)4πr2dr

, (1.28)

where K(ra) and M(ra) are the kinetic energy and the mass of the system inside ra.

We might then refer to a condition of global equipartition as:

miΣ
2
i = mjΣ

2
j . (1.29)

For many globular clusters, star-star collisions are important and might be

thought to drive the system toward a state of global equipartition. In reality, global

energy equipartition cannot be attained. In fact,s the long relaxation times evalu-

ated in the outermost parts of globular clusters are generally of the order of the age

of the Universe. In addition, as pointed out by theoretical investigations (Spitzer,

1969 [48] and Vishniac, 1978 [61]) and many simulations ([58], [12]), only a condi-

tion of partial equipartition can be attained in real systems, even in the innermost

regions.

Equipartition in kinematic observations

To study energy equipartition in real systems, it is necessary to determine

whether the velocity distribution is mass dependent. As we will note in Sect. 1.4.1,

until recently, star proper motions, which allow to determine the projected com-

ponents of the velocity vector, have been measured for only a small number of

globular clusters [5]. In the following we describe some examples of measures of

energy equipartition obtained by means of proper motion.

For the cluster 47 Tucanae, proper motion data show a difference between blue

stragglers3 and main sequence turn-off stars with similar magnitude. In particular, it

has been observed that the velocity dispersion of 18 blue stragglers within R < 20′′ (1

projected score radius) is smaller than that of bright red giants of similar luminosity,

by a factor of about
√

2. This trend has been explained as due to the fact that the

former are more massive than the latter [38].

3Blue stragglers are main sequence stars more luminous and bluer than stars at the main-

sequence turn-off point for the cluster: they are typically younger and more massive than other

star of the cluster.
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A direct measurement of global energy equipartition has been attempted for

ω Centauri [58], where the projected global velocity dispersion inside the effective

radius, Σp = Σp(Re,m), was measured for main-sequence stars with masses ranging

from 0.3 M� to 0.8 M�. It was observed that the dependency on mass is well fitted

by a power-law of the kind Σp(Re,m) = m−η, with η ≈ 0.16 ± 0.5. Because in a

condition of equipartition we would expect a power index η = 0.5, as suggested by

Eq. 1.27, we can deduce that ω Centauri is in a state of only partial equipartition,

as we would expect on the basis of its half-mass relaxation time (Eq. (1.20)) of 10

Gyr.

In a very recent investigation, Libralato et al. (2018) [36], analyzed the state of

energy equipartition of NGC 362, which is characterized by a half-mass relaxation

time trh ≈ 8.5 × 108 yr and a core relaxation radius trc ≈ 57.5 × 106 yr [27]. The

authors considered all the main sequence stars from the center to beyond 2Re and

divided them into 10 equally-populated mass bins of 2583 stars; for each bin they

computed the projected velocity dispersion Σp(2Re,m) and the median mass of the

stars. Also in this case the mass dependence was fitted by means of a power law,

obtaining a value of η = 0.114± 0.012. They also determined the radial variation of

η, which is not expected to be constant because the level of relaxation in a globular

cluster is not the same at all distances. The relevant sample was divided into 5 radial

bins of 25′′ (the core radius is 0.18′ [27]) each and a value of η has been measured

for all the radial bins. The quantity η decreases monotonically with distance from

the cluster center (Fig. 1.7). The innermost interval is characterized by η ≈ 0.4.

The estimate of η in the innermost radial bin may have been overestimated because

it is obtained from stars covering a smaller mass range (∆M ≈ 0.2M�) than in

the remaining bins (∆M ≈ 0.3M�). The other bins reveal that the level of energy

equipartition decreases from η ≈ 0.25 to η ≈ 0.08 in the outer parts.

Equipartition in numerical simulations

The issue of understanding how energy equipartition operates in globular clusters

has been explored mainly by means of numerical simulations. These have led to

convincing evidence that collisional systems reach a state of only partial energy

equipartition, even in the innermost regions. Pioneering work in this field was

done by by Spitzer & Hart (1971) [50] through simulations involving two-component

systems. In present day simulations an increasing number of free parameters can

be handled, and scientists prefer to include realistic mass functions. Trenti & van

der Marel (2013) [58] performed a systematic N -body study to characterize the

dependence of the global velocity dispersion on mass. They simulated systems with
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Figure 1.7: Decreasing trend of η with increasing projected distance from the center,

R (here indicated as r). The black horizontal line represents the global value of η.

Figure from Libralato et al. (2018) [36].

total number of particles which range from N = 32768 to N = 65536, with a realistic

initial mass function4 (Salpeter, 1955 or Miller & Scalo, 1979). In their simulations

they took into account stellar evolution and their code was initialized so as to obtain

a final main-sequence turnoff at 0.8M�. They also included a primordial binary

fraction ranging from 0 to 0.1. One of the N = 32768 runs also contained a central

Intermediate-Mass Black Hole IMBH (see Sect. 1.4.3), with the black hole mass

set at 1% of the total cluster mass. The initial conditions in the position and

velocity space were drawn from a King distribution function (King 1966 [34], see

Sect. 2.1.3), with dimensionless central potential Ψ = 3, 5, 7. The simulated star

clusters were tidally limited and particles experienced a tidal force from a point-

like hosting galaxy, under the assumption that the cluster was in circular orbit

at a distance selected so that the tidal radius was self-consistently defined by the

4The initial mass function (IMF) is an empirical function that describes the initial distribution

of masses for a population of stars. The IMF is often stated in terms of a series of power laws,

where the number of stars with masses in the range m to m + dm within a specified volume of

space, is proportional to m−α, where α is a dimensionless exponent:

dN/dm ∝ m−α.

The IMF of stars more massive than our sun was first quantified by Edwin Salpeter in 1955, who

favored an exponent of α = 2.35. Later, Glenn E. Miller and John M. Scalo extended the work

below one solar mass, suggesting that the IMF flattened (approached α = 1) below one solar mass.

22



1.3. GRANULARITY OF THE GRAVITATIONAL FIELD

King density profile. All models filled their tidal radius initially. Simulations were

generally run for t > 15 trh(0), where trh(0) is the initial half-mass relaxation time.

Otherwise, they were stopped at earlier times, when 80% or more of the initial mass

in the system had been evaporated (see Sect. 1.3.1).

The authors considered the dependence on mass of the projected global velocity

dispersion, in order to allow a more direct comparison with observations. In their

simulations, the dependence of the global projected velocity dispersion on mass at

different radii (which contain from 30% to 90% of the total mass) is well-fitted

by a power-law of the form Σp(r,m) ∝ m−η, both for single main-sequence stars

and for compact remnants. The latter tend to have higher η than main-sequence

stars (but still η < 0.5) due to their steeper (evolved) mass function. The result

is that only partial energy equipartition develops in the simulations, despite the

great variety of initial conditions considered. Central energy equipartition (inside

the radius containing the inner 10% of the stars as seen in projection) is studied at

the center of the system, where the projected central velocity dispersion σ0(m) is

fitted by a power law of the form ∝ m−η, like in the case of global equipartition.

The center can reach a maximum ηmax ≈ 0.15. No simulated system ever reaches a

state close to complete equipartition, with η = 0.5.

A new characterization of equipartition in Monte-Carlo simulations

A new approach for characterizing energy equipartition has been introduced

by Bianchini et al. (2016) [12] in view of applications to both simulations and

observations. The article considered the set of Monte Carlo cluster simulations

developed by Downing et al. (2010) [19] based on the Monte Carlo code of Giersz

(1998) [22]. Initial conditions of these simulations are described in detail in Sect.

3.1. The properties of the simulated systems for three time snapshots, at 4, 7,

and 11 Gyr. For each snapshot, the relaxation state of the system is described by

the quantity nrel = tage/trc, where trc is the core relaxation time, defined in Eq.

(1.19). The quantity nrel denotes the number of relaxation times that a cluster has

experienced. Higher values of nrel thus correspond to more relaxed stellar systems.

All the snapshots are pre-core collapse with respect to gravothermal catastrophe

(see Sect. 1.3.2).

To quantify the mass dependence of the kinematics, a projected velocity disper-

sion profile is constructed, as a function of stellar mass. The analysis is restricted

to stars within the projected half-light radius 6Re and includes all the stars within

the mass range 0.1 − 1.8 M�. The projected quantities are considered for a direct

comparison with observations. A simple analytical expression is adopted to describe
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the establishment of partial equipartition:

Σp(Re,m) =

Σ0 exp
(
−1

2
m
meq

)
if m ≤ meq

Σeq

(
m
meq

)−1/2

if m > meq

(1.30)

The quantities Σ0 and Σeq are two velocity scales. The parameter meq quantifies the

level of partial energy equipartition reached by the system. For m > meq the system

is characterized by full global energy equipartition inside Re (Σ(Re,m) ∝ m−1/2).

Following the power-law assumption proposed by Trenti & van der Marel (2013)

[58], the slope of the function is then:

η(m) = −d ln Σp(Re,m)

d lnm
=

1
2

m
meq

if m ≤ meq

1
2

if m > meq

(1.31)

This profile can describe the differential behavior of equipartition, that is reached

more efficiently in the higher-stellar mass regime. According to Eq. (1.30), systems

with lower values of meq are thus closer to full energy equipartition. Bianchini et

al. (2016) observed a correlation between meq and nrel (Fig. 1.8), with decreasing

meq for increasing nrel (see Tab. 1.1). Clusters with nrel > 20 reach an asymptotic

maximum degree of equipartition characterized by meq = 1.5 (see Tab. 1.1), not a

state of complete equipartition. These clusters have log Trc < 8.5 and are usually

referred to as relaxed globular clusters.

1.3.4 Mass segregation

Tendency towards equipartition has significant consequences on the evolution

and the structure of globular clusters. As the temperature of the heavier stars

approaches that of the lighter stars, the heavies will tend to acquire lower random

velocities and will sink towards the center of the cluster. On the other hand lighter

stars, which acquire higher random velocities, will move outwards and populate the

outermost regions of the cluster. The system will thus tend to be characterized by

a stratification in mass, usually called mass segregation.

Mass segregation in observed clusters

Measurements of mass segregation require the acquisition of data on stellar po-

sitions and luminosities (on the main sequence, luminosity correlates with mass). A

clear evidence of mass stratification - which we expect mainly in the central, more

crowded regions - has been obtained in several globular clusters thanks to high-

quality Hubble Space Telescope (HST) data. Such observations have confirmed

24



1.3. GRANULARITY OF THE GRAVITATIONAL FIELD

Figure 1.8: Relation between the level of energy equipartition reached by a cluster,

meq, and its relaxation condition, nrel. Well relaxed clusters (characterized by nrel >

20) reach a maximum degree of energy equipartition of meq = 1.55. The solid line

is the best fit interpolation for the meq − nrel correlation. Figure from Bianchini et

al. (2016) [12].

the qualitative picture that massive stars are preferentially found in the core. Star

classes with different masses, studied in different regions of the H-R diagram, show

different radial distribution functions. This effect has been observed by comparing

binaries and main sequence stars and by comparing blue stragglers and turn-off stars

and is generally interpreted as mass segregation.

In a detailed analysis, Anderson (1997) [2], used data coming from HST/FOC

(Faint Object Camera) and HST/WFPC2 (Wide Field and Planetary Camera 2 ) to

bring out the presence of mass segregation in the nuclei of three galactic globular

clusters: M92, 47 Tucanae e ω Centauri. He determined the luminosity functions5

for each cluster at two different distances from the center. These function were then

fitted with the predicted luminosity functions on the basis of multi-components

Michie-King models, with and without considering the presence of mass segregation

between the different stellar classes. M92 and 47 Tucanae show a good agreement

5The luminosity function represents the number of stars (per unit volume) with absolute mag-

nitude (M) in a luminosity interval (M ,M + dM):

LF (M) = dN(M)/dM

.
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with observational data and models characterized by mass segregation. This is prob-

ably due to the fact that the two systems show similar structural and concentration

parameters and they are both relaxed systems, with central relaxation times of

about 100 Myr. In contrast, ω Centauri exhibits a mild mass segregation, as would

be natural in a system characterized by a central relaxation time of 6 Gyr.

Mass segregation effects on M/L

A feature strictly connected with mass segregation is the variation of the M/L

ratio inside a globular cluster. Red giants and stellar (“dark”) remnants segregate

toward the center of a cluster. They are responsible for opposite variations of the

M/L: dark remnants increase the M/L, whereas bright red giants lower it. The

combined effect of their segregation can either increase or decrease the M/L ratio

in the central regions, generating a radial gradient in its profile. Other processes

should also be taken into account in the study of radial variations of the M/L ratio.

Stellar evolution has the effect of increasing the value of M/L since the ratio between

high-mass stars (characterized by low M/L) and low-mass stars (characterized by

high M/L) decreases with time, while massive stars gradually evolve into stellar

remnants. Another effect which has to be considered is the preferential escape of

low-mass stars (see Sect. 1.3.1). All these effects may jeopardize the application of

dynamical models if a constant M/L ratio is assumed.

Bianchini et al. (2017) [10] studied the effect of mass segregation on the ratio

M/L. They considered the simulations introduced in Sect. 3.1 and investigated

the connection between the relaxation state of a cluster and the radial variation

of M/L. They constructed the M/L profiles for all the snapshots, using a radial

binning with logarithmic spacing. The M/L was computed by considering all the

objects (stars and stellar remnants) in each spatial bin, and referring to the V-band

luminosity. In Fig. 1.9, we can observe the M/L profiles as a function of radius,

in units of the corresponding half-light radius. Profiles are color-coded according

to their relaxation state nrel. A clear dependence of the shape of the M/L profile

of a cluster on its relaxation state is observed. Less relaxed clusters (lower nrel,

red colors) display a central peak (reaching values of M/L up to 25M�/L� within

0.1Re) that progressively flattens down for more relaxed clusters (higher nrel, blue

colors). For the most relaxed clusters a slight increase in M/L occurs in the outer

part. As expected for mass segregated systems, we note that the profiles cannot be

considered constant with radius, not even in the case of dynamically young clusters.

In fact, systems with low nrel (with ages of the same order of their relaxation time)

are the ones that exhibit the strongest radial variation, namely a central peak. The
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Figure 1.9: M/L profiles (in the V band) as a function of radius (in unit of the half-

light radius Re, here indicated as Rh) for all simulations. The profiles are colour-

coded proportionally to their relaxation states indicated by nrel. Redder profiles

correspond to dynamically younger clusters, while bluer profile dynamically older

ones. We can see that dynamically young clusters tend to show a central increase of

the M/L ratio, while more relaxed system have a flatter M/L profile. Figure from

Bianchini et al. (2017) [10].

presence of a minimum is due to the gradual mass segregation of stars with low M/L

(giant stars and high mass main-sequence stars) toward the cluster center, whereas

the increase in the outer parts is due to the presence of low-mass main sequence stars,

characterized by higher M/L. Interestingly, the profiles show a common minimum

around 0.2–0.3Re, as indicated by a black arrow in Fig. 1.9. To interpret the

central peak in the M/L profiles (within 0.1Re) and its relation with the relaxation

states of the clusters, we have to consider the combined role of dark remnants (high-

M/L neutron stars and stellar black holes) and bright stars (low-M/L red giant

stars). Less relaxed clusters have a higher fraction of dark remnants than more

relaxed clusters in their core. This is due to the fact that, while a cluster reaches a

more advanced state of dynamical evolution, the number of stellar encounters that

the dark remnants have experienced is higher, and therefore they have probably

experienced a higher number of dynamical ejections.
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In Tab. 1.1 we report the equipartition parameter meq, introduced in Eq.[1.30]

and the V-band M/L ratios for the 4, 7 and 11 Gyr snapshots: the global M/L, the

M/L ratio within the half-light radius Re and the M/L ratio within 0.1Re, in solar

units.

Table 1.1: Relaxation states and M/Ls. Table from Bianchini et al. (2017) [10].
nrel meq M/L global M/L(< Re) M/L(< 0.1Re)

4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr

Sim 1 2.8 4.4 8.3 3.24 2.37 2.00 1.04 1.61 2.22 0.85 1.23 1.84 0.92 2.09 2.17

Sim 2 1.8 3.6 5.70 4.18 3.36 2.37 1.15 1.95 2.95 0.98 1.72 2.51 1.67 2.48 3.81

Sim 3 0.9 1.50 2.5 5.03 3.84 2.92 1.19 1.66 2.59 1.08 1.52 2.35 1.69 2.59 2.82

Sim 4 0.7 1.20 2.0 7.63 5.58 4.46 1.38 2.05 3.26 1.34 1.88 3.12 2.58 4.80 5.60

Sim 5 14.6 64.9 200.2 1.71 1.50 1.66 0.85 1.22 1.78 0.44 0.69 1.29 0.43 0.30 1.44

Sim 6 10.1 23.6 60.1 2.48 2.04 1.65 1.05 1.55 2.20 0.8 1.15 1.61 0.84 1.09 0.81

Sim 7 3.6 7.6 11.2 3.07 2.19 1.90 0.73 1.00 1.40 0.55 0.70 1.02 0.54 0.59 0.99

Based on the above-described simulations, if we can independently determine the

relaxation state of a cluster, we may thus anticipate its M/L profile and therefore

remove some of the degeneracies (such as the mass-anisotropy degeneracy) in the

structure of the cluster and disentangle the dynamical effects of stellar dark remnants

from those of other dark components (e.g. intermediate-mass black holes or dark

matter halos).

1.4 Recent discoveries

Until recently, globular clusters were generally assumed to be single population,

isotropic stellar systems, formed by a single starburst in the early Universe. This

traditional picture of the internal dynamics of globular clusters has now been revo-

lutionized by a series of discoveries about their chemical, structural, and kinematic

properties. The empirical evidence that their velocity space is much more complex

than earlier assumed provides fresh new curiosity about many aspects of collisional

gravitational dynamics. Such renew interest in dynamics is coupled with the recent

discovery of chemical abundance anomalies, suggesting that not all stars in a cluster

were born in a single homogeneous population. Globular clusters may also soon re-

veal the presence of massive black holes that would provide a “missing link” in the

populations and growth of cosmic supermassive black holes. Globular clusters may

also host populations of smaller (i.e. stellar-mass) black holes, potential progeni-

tors for sources of gravitational wave emission. Finally, reconstructing the evolution

of structural, kinematic and chemical properties of globular clusters would lead to

important information about the assembly history of the Milky Way, including its

dark matter component.
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With the arrival of data from GAIA mission, we are entering the era of high-

precision kinematics. The space observatory GAIA is now measuring distances,

positions and proper motions of thousands of stars in the globular clusters of our

Galaxy, with unprecedented accuracy. This new generation of data, coupled with

astrometric measurements by the Hubble Space Telescope and other photometric

and spectroscopic ground-based surveys (e.g., the GAIA-ESO survey), will enable

us to probe the full six-dimensional “phase-space” properties of globular clusters.

Therefore, we are about to enter a new golden age for the study of the internal

dynamics of these stellar systems.

Figure 1.10: Gaia’s all-sky view of our Milky Way Galaxy and neighbouring galax-

ies, based on measurements of nearly 1.7 billion stars. The map shows the total

brightness and color of stars observed by the satellite in each portion of the sky

between July 2014 and May 2016. The bright horizontal structure that dominates

the image is the Galactic plane, the flattened disc that hosts most of the stars in

our home Galaxy. Figure from sci.esa.int/gaia.com.

1.4.1 Internal kinematics

Until recently, almost all of what was known about the internal motions within

globular clusters was based on spectroscopic line-of-sight (LOS) velocity measure-

ments. These suffer from some intrinsic limitations. First of all only brighter (more

massive) stars can be analyzed spectroscopically. Moreover, in the crowded central

regions of the cluster core, spectroscopy is limited by source confusion. Integral-field

29



1.4. RECENT DISCOVERIES

spectroscopy is affected by the shot noise from the bright sources. In addition, LOS

measurements are limited to measuring only one component of the velocity vector.

A significant improvement beyond the above limitations is possible when proper-

motion (PM) measurements can be performed. Proper motions have the potential

to provide several advantages over LOS velocity studies: (1) no spectroscopy is

required, so the more plentiful fainter stars can be studied; (2) stars are measured

individually, in contrast with integrated light measurements, which contain a dispro-

portionate contribution from bright giants; and (3) two components of the velocity

vector are measured instead of just one. Proper motions are small and difficult

to measure with ground-based telescopes. The stable environment of space makes

the Hubble Space Telescope (HST) and the new space observatory GAIA excellent

astrometric tools for the study of proper motions. Hubble Space Telescope has ex-

ecuted only a very limited number of programs specifically aimed at the study of

proper motions in globular clusters, in particular of NGC 104 (47 Tucanae), NGC

7078 (M15), NGC 6266, and NGC 5139 (ω Centauri, Anderson & van der Marel,

2010) [5]. The study of proper motions by means of HST allowed to reveal some

new interesting aspects, such as the presence of rotation [3], [9], [6] and anisotropy

(see below).

A great improvement is expected to come from GAIA mission. GAIA will provide

positional and velocity (on the plane of sky) measurements with the accuracies

needed to produce a stereoscopic and kinematic census of about one billion stars in

our Galaxy and throughout the Local Group. This amounts to about 1 per cent

of the Galactic stellar population. The first release included celestial positions of

1.1 billion stars, the parallax and proper motion for a subset of two million, plus

additional information on 3000 variable stars and 2000 distant quasars.

Anisotropy

A direct measurement of the degree of velocity anisotropy (defined in Sect. 1.2.2)

can be obtained by studying the ratio between velocity dispersions in two directions

in the plane of sky as functions of the projected radial distance from the center of

the cluster. In Fig. 1.11 we report the anisotropy profile determined for 47 Tuc by

Bellini et al. (2017) [6]. The center of the cluster is isotropic, with increasing radial

anisotropy moving outward. It is worth noting that this trend agrees with what is

seen in a sample of 22 globular cluster [6].

Isotropy in the innermost regions can be interpreted as a consequence of two-body

relaxation processes. The development of velocity anisotropy can be interpreted as

the combined result of the formation mechanism of globular clusters (e.g., violent
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Figure 1.11: Deviation from isotropy (gray horizontal line) in 47 Tuc as a function

of the projected radius R, here indicated as r. The horizontal line at 0 indicates

an isotropic system. The center of the cluster is isotropic, with increasing radial

anisotropy moving outward. Red points are computed using WFPC2 data, for

which systematic effects cannot be quantified. Core and half-light radii (Harris,

1996 values) (Rc and Re respectively) are marked by the two vertical lines in all

panels. Figure from Bellini et al. (2017). [6]

relaxation, Lynden-Bell (1967) [37]) and their subsequent long-term dynamical evo-

lution. Violent relaxation can generate significant anisotropy, with radial orbits

dominating outside the half-mass radius. In addition, dynamical evolution can also

naturally determine the development of radial anisotropy. Numerical investigations

(pioneering studies from Hénon (1971) [31], Spitzer & Hart (1971) [50], Spitzer &

Shapiro (1972) [51] and, more recent studies from Bianchini et al. (2017) [11], Zoc-

chi et al. (2016) [63]) have shown that pressure anisotropy can arise in a collisional

system, even if the initial conditions isotropic. During their evolution, isolated glob-

ular clusters tend to develop a structure composed of two distinct regions, a dense

core and a halo, as a consequence of the process described in Sect. 1.3.2. The core-

halo structure has important implications on the velocity distribution of the system.

Strong relaxation in the core (because of its high density) forces isotropy and con-

tinues to produce high-energy stars whose orbits extend into the halo. Owing to

the low density in the halo, stars which travel in it interact mainly with stars in the

core rather than with other halo stars: they do not experience collisions and return

to the core, producing very radial orbits on average. Halo stars that are initially

not on radial orbits do not go into the core and their velocity distribution does not

evolve spherically. Therefore radial orbits tend to dominate the halo and velocity

anisotropy increases as the halo grows, penetrating into the innermost region as the
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core collapses [54].

Recently Tiongco et al. (2016) [55] and Zocchi et al. (2016) [63] have studied

the evolution of the velocity anisotropy of globular clusters in a tidal field, showing

that the field can play a significant role in shaping the velocity anisotropy. As

the evolution proceeds, the external tidal field has the effect of suppressing the

anisotropy, and the system may eventually become fully isotropic. This happens

for two main reasons: first, mass loss has the effect of exposing the deeper parts

of the systems, where deviations from isotropy are more modest [24]; second, the

tidal torque induces isotropy in the velocity dispersion of the outer regions of the

cluster [43]. Figure 1.12 illustrates the evolution of anisotropy obtained from N -body

Figure 1.12: Time evolution of the radial profile of σt/σr for an initially isotropic

model. The projected radius is normalized to the tidal radius, here indicated as rJ .

Each line is the median of the profiles obtained from four realizations. The imposed

isotropic profile of the King model at t = 0 is shown.

simulations of an initially isotropic cluster in the presence of a tidal field performed

by Tiongco et al. (2016) [55]. The cluster is initialized with an isotropic King model,

and, as it evolves and expands, it develops a strong radial anisotropy in the outer

regions. As the system continues its evolution and starts to lose mass, a minimum in

the ratio σt/σr forms (corresponding to a maximum in the radial anisotropy) while

the outermost regions become increasingly less radially anisotropic.
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1.4.2 Multiple populations

Chemical composition in globular clusters is determined mostly from spectro-

scopic studies, which show that stars in globular clusters are mostly Population II

stars, that is old and with low metallicities6. For decades globular clusters have

been thought to be systems made of stars with the same initial chemical compo-

sition, that is stellar populations were thought to be very homogeneous. Recent

studies of globular clusters have shown that they are not simple stellar populations,

being rather made of multiple components of stars. The most convincing evidence

comes from the observation of different chemical compositions for different stars and

the presence of two or more branches in the evolutionary sequences of the H-R dia-

gram. The suggested interpretation is that different stellar population have formed

in successive epochs.

The first who suspected that the main sequence would split in globular clusters

was Jay Anderson who considered the case of ω Centauri in his PhD thesis [2], but

his result was based on only one external WFPC2 field, and this finding was so

unexpected that he decided to wait for more data and more accurate photometry.

Later, Bedin et al. (2004) [4] confirmed the main sequence split in ω Centauri

in WFPC2 field and in an additional ACS (Advanced Camera for Surveys) field

located 17′ from the cluster center. In reality, the scenario in ω Centauri is even

more complex; as is already evident in the color-magnitude diagram of Bedin et al.

(2004) the three main sequences of the cluster spread into a sub-giant branch (SGB)

made of five distinct components characterized by different metallicities and ages.

These results reinforced the idea that ω Centauri could be a peculiar object, not

even a globular cluster, but a remnant of a dwarf galaxy. The case of ω Centauri

stimulated a number of investigations that showed that the multiple population

scenario is not a peculiarity of a single object. Piotto et al. (2007) [45] showed

that also the color-magnitude of NGC 2808 is splitted into three main sequences.

In general, the multiple population phenomenon differs from cluster to cluster.

1.4.3 Intermediate-Mass Black Holes?

Globular clusters are candidates to host Intermediate-Mass Black Holes (IMBH),

that is black holes with mass of M• ≈ 103 M�. Black holes in this mass range should

6Metallicity is the ratio between the abundance of iron with respect to the Sun. It is usually

expressed as [Fe/H]:

[Fe/H] = log (NFe/NH)− log (NFe/NH)sun

.
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represent a natural link between solar mass black holes, the number of which in

globular clusters seems to be higher than expected, and Super-Massive black holes

(with mass M• > 106M� ), found in the nucleus of most galaxies, in particular in the

Local Group. At the present day, we do not have convincing proof of the existence of

IMBHs; some studies led to controversial results, as the central dispersion velocity

gradients could be interpreted not only as due to the presence of an IMBH but also

in terms of different dynamical processes.

Noyola et al. (2008) [42] observed that the surface brightness profile of ω Centauri

shows a continuous rise toward the center, in contrast with previous measurements

that found a flat core. The shape of the profile is similar to that expected for star

clusters containing black holes in their centers. They also measured a line-of-sight

velocity dispersion for two regions, one at the center of the cluster and the other 14′′

away (core radius is 2.37′ for this cluster [27]), detecting a rise in velocity dispersion

from 18.6 km/s for the outer field to 23 km/s for the central one. They compared

the observed velocity dispersion profile with a series of isotropic models containing

black holes of various masses and found that a black hole of 4× 103M� is necessary

to match observations.

Later, van der Marel & Anderson (2010) [60] presented a detailed dynamical

analysis of the star-counts, surface-brightness, and kinematic data available for the

same cluster, with a particular focus on new HST data available. Based on the ob-

served profile of the projected density, their models used the Jeans equation to yield

predictions for the projected profiles of line-of-sight velocity dispersion as function

of projected distance R from the cluster center, in each of the three orthogonal coor-

dinate directions (line of sight, proper motion radial, and proper motion tangential).

They found out that models with a core provide a good fit to the kinematic data

without any dark mass: in these models the presence of the central peak in velocity

dispersion is due to the presence of radial anisotropy in the center of the system.

Since a core is also consistent with the observed density profile, this seems to imply

that the presence of an IMBH is not required in ω Centauri. Differences in the

results seem to be due to different positions of the cluster center considered by the

two groups. The case of ω Centauri shows that IMBH detection can be accompanied

by a combination of subtle effects which complicate kinematic analysis.
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Figure 1.13: A collection of color magnitude diagrams from WFPC2 and ACS data

of ω Centauri. For each color-magnitude diagram, the label indicates the distances

of the field from the cluster center. The left part of the figure shows four color

magnitude diagrams: the two upper panels focus on the turnoff stars, and the

lower ones on the main-sequence stars. Panel (a) shows the original WFPC2 color

magnitude diagram that first discovered the lower turnoff (LTO) sequence. Panel (b)

shows the same sequence (from WFC data) with many more details and more stars,

from a larger region of the cluster. Panel (c) shows the original color magnitude

diagram from Anderson (1997) [2], where the double main sequence (DMS) was first

identified. The main sequence appears to bifurcate into two distinct sequences, with

a region between the two that is almost devoid of stars. Panel (d) shows another

color-magnitude diagram from ACS/WFC images, which also shows the anomalous

DMS in a different field, at R = 17′ from the center. Panel (e) shows the subsample

of the stars plotted in panel (b), located at projected radial distances R > 4′. Figure

from Bedin et al. (2004) [4]
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Chapter 2

Dynamical models

A quantitative discussion of globular clusters requires the introduction of realistic

dynamical models which satisfy assumptions A, B, C introduced in Sect. 1.2. These

models are useful for theoretical investigations of dynamical mechanisms as initial

conditions in the computations of detailed numerical models, and to fit observed

clusters. In particular, by means of these models, parametric fits to the luminosity

and kinematic profiles of globular clusters allow us to measure important structural

properties, such as the M/L ratio. We introduce some specific models, starting with

one-component models, in which all stars have the same mass m (mass density is

equal to mn(r), where n is the numerical density)1. One-component models describe

observed clusters with the smallest number of free parameters. Of course, in order

to take into account fundamental aspects of the relaxation process such as energy

equipartition (Sect. 1.3.3) and mass segregation (Sect. 1.3.4), multi-components

models are required.

2.1 One-component models

2.1.1 Plummer model

A simple class of spherical isotropic models can be constructed by assuming a

power-law dependence of the relevant distribution function on energy per unit mass:

f(E) =

k1(−E)p for E < 0

0 for E ≥ 0,
(2.1)

1In practice, the assumption of a single mass is not required. The models assume that the

stellar population is homogeneous throughout the cluster.
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where k1 is a constant and the gravitational potential Φ(r) introduced in Eq. (1.8) is

taken to vanish at the cluster surface. From Eq. (2.1) we can compute the smoothed

mass density, defined in Eq. (1.2):

ρ(r) = k2[−Φ(r)]p+3/2, (2.2)

where k2 is a constant. The Poisson equation Eq. (1.10) becomes the same as the

equation for a polytropic sphere with index n = p + 3/2. Analytic solutions are

known for n = 0 (uniform sphere), n = 1, and n = 5. Despite its infinite radius,

the polytrope with n = 5 gives a reasonable description of the surface brightness

profile of real clusters with a compact core and an extended outer envelope. For this

reason, it is sometimes used as a starting point for simulations (e.g., by Bianchini et

al. (2016) [12], see Sect 3.1). Because this model was used by Plummer (1911) [46]

in an attempt to fit the observed light distributions of clusters, it is often called the

Plummer model. Its physical properties can be expressed by simple formulas [7]:

ρ(r) =
3Mb2

4π

1

(b2 + r2)5/2
, (2.3)

Φ(r) = − GM

(b2 + r2)1/2
= −2σ2(r), (2.4)

where σ2 is the mean square velocity. The integrated mass is given by

M(r) = M
r3

(b2 + r2)3/2
. (2.5)

so that the half-mass radius occurs at rh ≈ 1.3 b. The projected density ρp(R) is

given by:

ρp(R) =
M

π

b2

(b2 +R2)2
. (2.6)

The radius containing half of the projected mass equals Re ≈ b [49].

2.1.2 Isothermal sphere

A physical model based on the role of relaxation in globular clusters might con-

sider a distribution function suggested by statistical equilibrium:

f(E) = A exp (−aE), (2.7)

where the energy per unit mass is E = (1/2)v2 + Φ(r) and A and a are positive

constants related to the total mass and the velocity dispersion. A spherical system
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in which Eq.(2.7) holds exactly is called an isothermal sphere. The mass density for

such a distribution function is:

ρ(r) = 4πA exp [−aΦ(r)]

∫ ∞
0

v2e−av
2/2dv = 4π

√
2
A

a3/2
Γ

(
3

2

)
exp (ψ) =

Ã

a3/2
exp (ψ)

(2.8)

where Γ(a) =
∫∞

0
ta−1e−tdt is the gamma function and Ã = 4

√
2πAΓ(3/2). Here we

have introduced the dimensionless potential ψ = −aΦ(r). The density depends on

the radial coordinate only implicitly through the potential. The velocity dispersion

can be evaluated by means of Eq.(1.13):

σ2(r) =
2

a

Γ(5/2)

Γ(3/2)
=

3

a
, (2.9)

which is constant (isothermality). The fully self-consistent problem requires the

solution of the Poisson equation (Eq. (1.10)), which we express in dimensionless

form by rescaling the radial coordinate r → ξ = r/λ, with λ =
√
a1/2

/
(4πGÃ):

1

ξ2

d

dξ

(
ξ2dψ

dξ

)
= − exp (ψ). (2.10)

If we look for a solution with finite central density, the natural boundary conditions

are ψ(0) = Ψ and (dψ/dξ)(0) = 0. Close to the center, the potential well can be

approximated by a parabola with

ψ ∼ Ψ− 1

6
exp(Ψ)ξ2. (2.11)

As ξ increases, ψ approaches asymptotically, with slow oscillations, a singular solu-

tion of Eq. 2.10:

ψ = − ln

(
ξ2

2

)
. (2.12)

This form of ψ corresponds to the dimensionless density profile:

ρ̂ = exp (ψ) =
2

ξ2
=

2λ2

r2
. (2.13)

Thus the integrated mass of the singular solution:

M(r) =

∫ r

0

ρ(r′)4πr′2dr′ = 8π
Ã

a3/2
λ2r, (2.14)

which increases linearly with radius. This last equation shows that mass associated

with an isothermal sphere increases indefinitely, as result of the tail of the Maxwellian

velocity distribution, and makes this model inapplicable for describing the global

profiles of stellar systems. However, this model could represent a good description

for the inner regions of clusters as they are believed to be nearly isothermal.
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2.1.3 King models

A simple velocity distribution function that resolves the problem of infinite mass

of the isothermal sphere is obtained by introducing a truncation radius rt, so that

f vanishes for E > Et = Φ(rt):

fK(E) =

A [exp (−aE)− exp (−aEt)] for E < Et

0 for E ≥ Et,
(2.15)

where A, a are positive constants and Et represents the boundary energy above

which stars do not belong to the system and are ignored. The physical basis for this

truncation is the presence of a galactic tidal field, which pulls stars out of the cluster

beyond the tidal radius rT (Eq. (1.24). Mathematically, the truncation radius rt

may be smaller than the relevant tidal radius; in this case the model is said to

underfill the tidal volume. Models based on this distribution function have been

computed and compared with observed clusters by King [34] and thus are generally

called King models. We introduce the dimensionless escape energy ψ, defined as:

ψ(r) = −a[Φ(r)− Φ(rt)]. (2.16)

The condition E < Φ(rt) can be written as av2/2 < ψ. The density profile (for

r < rt, i.e. ψ > 0) associated with the distribution function is given by

ρ(r) =
Ã

a3/2
exp (ψ)γ

(
5

2
, ψ

)
=

Ã

a3/2
ρ̂(ψ), (2.17)

with Ã = (8/3)π
√

2A exp [−aΦ(rt)]. The function γ is the incomplete gamma

function defined as γ(s, x) =
∫ x

0
ts−1e−tdt. The dimensionless mass density is

ρ̂(ψ) = exp (ψ)γ (5/2, ψ) and, like for the isothermal sphere (Eq.(2.8)), it depends

on the radial coordinate only through the potential. The velocity dispersion can be

written as

σ2(r) =
6

5a

γ(7/2, ψ)

γ(5/2, ψ)
. (2.18)

It should be emphasized that despite a’s being constant, the velocity dispersion

associated in the King models is not constant. The velocity dispersion decreases

monotonically with radius and vanishes at the truncation radius. The presence of

the truncation present in Eq.(2.15) implies a truncation in the velocity space, brings

the system out of thermodynamical equilibrium, and makes the velocity dispersion

depend on the position.

The self-consistency relation implied by the Poisson equation, by a suitable

rescaling of the radial coordinate r → ξ = r/λ, with λ =
√
a1/2/(4πGÃ), can
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be written as:
1

ξ2

d

dξ

(
ξ2dψ

dξ

)
= −ρ̂(ψ), (2.19)

which is to be integrated with boundary conditions ψ(0) = Ψ and (dψ/dξ)(0) = 0.

Integrating Eq. (2.19) determines the dimensionless radius rt/λ as the location

where ψ vanishes. Thus a one-to-one correspondence is found between Ψ and rt/λ.

A commonly used scale for this problem is

r0 =

√
9a1/2

4πGÃρ̂(Ψ)
=

3√
ρ̂(Ψ)

λ. (2.20)

King models are thus a one-parameter family of models, identified by the value of

Ψ or, more often, by the value of the concentration index

c = log (rt/r0). (2.21)

The radius r0 is sometimes confused with the core radius rc. With the definition of

Eq. (2.20), the identification is correct for the isothermal sphere, and it is reasonable

for concentrated King models, whereas at low values of Ψ, the ratio r0/rc changes

significantly with Ψ.

Application of these models to interpret the photometric profiles of globular clus-

ters has been successful. The globular clusters of our Galaxy are generally well fitted

by King models with concentration parameters in the range 0.5 < c < 2 (see Fig.

2.1); some are even more concentrated, but they are generally interpreted as systems

in a post-core-collapse phase because of the onset of the gravothermal catastrophe

(see Sect. 1.3.2), which is known to take place at Ψ & 7.4. Unfortunately, so far

the comparison between models and data has been limited mainly to a fit to the

available photometric profiles. Only recently attention has been drawn to the need

for a combined test of photometric and kinematic data.

Regardless of their success, King models exhibit several internal inconsistencies.

The models are meant to describe tidally truncated stellar systems, but in their

original form they are spherical, in spite of the stretching that tides are expected

to impose. The models are chosen to reflect the conditions of a collisionally relaxed

state, but actually, outside their half-mass radius, globular clusters and the models

themselves are associated with very long relaxation times (Harris 2010) [27]. These

models are generally applied as one-component models, that is, they are suited

to describe stellar systems made of a single homogeneous stellar population, yet,

if collisional relaxation is at work, it should generate significant mass segregation,

with heavier stars characterized by a distribution more concentrated than that of

lighter stars. With respect to this last inconsistency, a more realistic generalization

to two-component King models is presented in Sect. 2.2.1.

40



2.1. ONE-COMPONENT MODELS

Figure 2.1: Projected density profiles for the King models. The curves show the

logarithm of the projected density (normalized to its central value) for selected

values of the concentration parameter c (marked along the curve). For each case,

an arrow provides the location of the relevant truncation radius. Figure from King

(1966) [34].

2.1.4 f
(ν)
T models

Many large globular clusters are characterized by long relaxation times (e.g., ω

Centauri, NGC 2419), comparable to the age of the Universe even in their central

regions [27]. Because in these clusters collisions have not had time to act, we expect

them to be far from thermodynamical equilibrium, so that their description in terms

of King models may not be very adequate. In contrast, these systems might be de-

scribed by means of models originally conceived for less relaxed systems such as,

for example, elliptical galaxies. Studies of the dynamics of elliptical galaxies have

focused mainly on the picture of galaxy formation by incomplete violent relaxation

from collisionless collapse. There are ways to translate this picture into an ap-

propriate choice of the relevant distribution function to represent the current state

of ellipticals. One particular choice, which reflects a conjecture on the statistical

foundation of the relevant distribution function (see Stiavelli & Bertin (1987) [52]),

corresponds to a family of partially relaxed models called f (ν) models, constructed

from:

f (ν)(E, J) =

A exp

[
−aE − d

(
J2

|E|3/2

)ν/2]
for E < 0

0 for E ≥ 0,

(2.22)
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where A, a, and d are positive constants and J is the magnitude of the specific

angular momentum. In particular, d is related to the anisotropy scale of the system.

In principle, ν is any positive real number; in practice, a given value of ν ≈ 1 is taken

and thus ν should be considered as a fixed parameter. Self-consistent models based

on this distribution function define a family of anisotropic, non-truncated models.

The presence of anisotropy (as suggested by the presence of a second integral of

the motion in the distribution function) is natural in systems formed via incomplete

violent relaxation, which have the characteristic signature of radially-biased pressure

anisotropy for less bound stars.

The use of the f (ν) models is preferred to other options (for example to the

use of King-Michie models, Michie (1963) [40]) because the f (ν) models are based

on a specific physical justification and have been shown to perform well both in

interpreting the observations of bright ellipticals and the properties of the products of

incomplete violent relaxation found in numerical simulations of collisionless collapse

(over a range of nine orders of magnitude in the computed density profiles, with an

excellent matching of the properties of the generated pressure anisotropy profiles;

see Trenti, Bertin, van Albada (2005) [57]).

In a recent investigation Zocchi, Bertin, Varri (2012) [62] used this class of spher-

ical f (ν) models to study a sample of Galactic globular clusters under different re-

laxation conditions and compared their performance to that of standard spherical

King models. This exploratory investigation indicates that for less relaxed clusters

(e.g. NGC 2419, ω Centauri) the use of f (ν) models is encouraged because they

can match significant velocity gradients inside the half-light radius, as opposed to

King models. However, these models, being non-truncated, are at a disadvantage in

describing the outer parts of the available photometric profiles.

Truncated f (ν) models

In order to incorporate the effects of a tidal truncation, a truncation to the f (ν)

was introduced by de Vita, Bertin, Zocchi (2016) [16]. They considered models with

ν = 1 and argued:

f
(ν)
T (E, J) =

A exp
[
−aE − dJ

|E−Et|3/4

]
for E < Et

0 for E ≥ Et.
(2.23)

For J 6= 0, the distribution function vanishes at the cut-off energy Et together with

all its derivatives. The self-consistent problem can be written in a dimensionless form

by means of the dimensionless potential ψ(r) = −a[Φ(r)−Φ(rt)], the dimensionless
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radius ξ = ra1/4d and dimensionless velocity ω2 = (a/2)v2. The mass density

associated with the f
(ν)
T distribution function is:

ρ̂(ξ, ψ) =
A

a3/2

∫ π

0

∫ √ψ
0

f̂
(ν)
T (ξ, ψ, ω, ζ)ω2 sin ζdζdω =

A

a3/2
ρ̂(ξ, ψ), (2.24)

where

f̂
(ν)
T (ξ, ψ, ω, ζ) = 4

√
2π exp

[
−ω2 + ψ −

√
2ξω sin ζ

|ω2 − ψ|3/4

]
, (2.25)

and ζ is the angle between the position vector r and the velocity vector v of a single

star. In this case, dependence on radial coordinate is not only implicit through ψ but

also explicit, as opposed to King models (Eq. (2.17)). The resulting dimensionless

form of the Poisson equation (Eq. (1.10)) is given by:

d2

dξ2
ψ +

2

ξ

d

dξ
ψ = −1

γ
ρ̂(ξ, ψ) (2.26)

where the dimensionless parameter γ = ad2/(4πGA) has been introduced. This

differential equation is integrated under the boundary conditions ψ(0) = Ψ and

(dψ/dξ)(0) = 0 out to the dimensionless truncation radius ξt, where the dimen-

sionless potential vanishes. Hence, the self-consistent problem for the dimensionless

potential reduces to a family of second-order differential equations defined by two

structural parameters: the central dimensionless potential Ψ and γ.

For non-truncated f (ν) distribution functions, γ is determined as an eigenvalue

γ = γ(Ψ) in order to satisfy the condition of Keplerian decay of the gravitational

potential (Φ ∼ −1/r) at large radii. For models with ν ≈ 1, in the range 0 ≤ Ψ ≤ 15,

the function γ(Ψ) presents a pronounced peak at Ψ ≈ 5.5; for higher values of

Ψ, γ decreases, reaches about half of its peak value at Ψ ≈ 10, and then stays

approximately constant (as illustrated by Fig. 2.2). In truncated models γ is left

as a free parameter. However, since, for a given Ψ, there is a maximum value γmax

beyond which the models do not present any truncation. The parameter space thus

is confined to the region under the curve γ(Ψ) found for the non-truncated models.

For a given Ψ, the non-truncated models are recovered in the limit γ → γmax.

In the natural spherical coordinates, the velocity dispersion tensor is diagonal

with σ2
θ = σ2

φ. We thus consider a radial and a tangential component (σ2
T = σ2

θ +σ2
φ)

of the velocity dispersion tensor:

σ2
r(ξ, ψ) =

2

a

1

ρ̂

∫ π

0

∫ √ψ
0

f̂
(ν)
T (ξ, ψ, ω, ζ)ω4 cos2 ζ sin ζdζdω, (2.27)

σ2
T (ξ, ψ) =

2

a

1

ρ̂

∫ π

0

∫ √ψ
0

f̂
(ν)
T (ξ, ψ, ω, ζ)ω4 sin3 ζdζdω, (2.28)
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Figure 2.2: Relation γ(Ψ) for the f (ν) family of models, for selected values of ν. To

fit the adopted frame, the γ values corresponding to ν = 3/8 have been multiplied

by a factor 1/6 and the ones corresponding to ν = 1/2 by a factor 2/3. Figure from

Trenti & Bertin (2005) [56].

where we have used the relations v2
r = v2 cos2 ζ and v2

T = v2
θ + v2

φ = v2 sin2 ζ.

As expected, according to the picture of violent relaxation, these models are

characterized by an isotropic core and a radially-biased anisotropic envelope. The

radial extent of the anisotropic core can be measured by means of the anisotropy

radius rα, defined as the radius at which α(rα) = 1, with the local anisotropy param-

eter α defined in Sect. 1.2.2). At fixed Ψ, models with higher γ are characterized

by lower values of rα/rh, as shown in Fig. 2.3.

Curiously, in our study of some simulations initialized by isotropic models we

will find (see Sect. 3.3.1) that the slow cumulative effect of star encounters may

produce radially biased anisotropic systems, similar in phase space to the result of

violent relaxation. This result has also bee discussed in several recent papers [11],

[55], [63].

2.2 Two-component models

Models introduced in Sect. 2.1 are suited to describe stellar systems made of

a single homogeneous stellar population. However, in the presence of significant

collisionality, stars with different masses, should be characterized by different dis-

tributions, as a consequence of energy equipartition (see Sect. 1.3.3) and mass
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Figure 2.3: The left frame shows the anisotropy profile α(r) for selected values of γ

at fixed Ψ. Models with higher γ are characterized by lower values of rα/rh (here the

half-mass radius is indicated as rM). The right frame shows the anisotropy profile

for selected values of Ψ at fixed γ. Where a curve terminates, the truncation radius

is reached. Figure from de Vita, Bertin, Zocchi (2016) [16].

segregation (see Sect. 1.3.4). Thus a more realistic framework for the modeling of

globular cluster is often sought in terms of multi-component models, in which the

distribution function is given by:

f =
N∑
i=1

fi, (2.29)

with fi the distribution function for the i-th component. A second, physically sepa-

rate reason to address the issue of multi-component models is given by the relatively

recent finding that globular clusters host multiple stellar populations. As explained

in Sect. 1.4.2, in many observed cases, the suggested interpretation is that clusters

have been the site of multiple generations of stars, so that the stars can be divided

into the groups of the first and the second generation, and these groups may be

associated with different dynamical properties, such as concentration or degree of

anisotropy.

Multi-components models have been constructed with a large number of compo-

nents to allow for a better fitting to photometric profiles of globular clusters (e.g.,

N = 10 for Da Costa & Freeman (1976) [15], see Sect. 2.2.3). Sometimes an ap-

proach based on two or three components has been preferred for simpler studies of

dynamical mechanisms; by means of simpler models it is possible to attain analytic

conclusions on processes such as the Spitzer “instability” (Sect. 2.3). Here, much
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as was done by Spitzer [48], we focus on two-component models, in which we distin-

guish a population of lighter stars (let m1 be the representative mass of its individual

stars and M1 its associated total mass) from a second population of heavier stars

(with m2 > m1 and, in general M2 < M1), so that the total mass of the cluster is

M = M1 +M2.

2.2.1 Two-component King models

Starting from the King models described in the Sect. 2.1.3, we introduce the two

distribution functions (i = 1, 2):

fKi (E) =

Ai [exp (−aiE)− exp (−aiEt)] for E < Et

0 for E ≥ Et,
(2.30)

where Ai and ai are positive constants and Et is the escape energy (Et = Φ(rt)). The

truncation radius, rt, is assumed to be the same for all the components. As for the

one-component models, we rescale the problem to a dimensionless form. We do so,

by referring to a length scale and to an energy scale based on the constants associated

with the lighter component; we define the dimensionless potential ψ = −a1[Φ(r)−Et]
and the dimensionless radius ξ = r/λ, with λ =

√
a

1/2
1 /(4πGÃ1). Mass density for

each component is:

ρi(r) =
Ãi

a
3/2
i

exp

(
ai
a1

ψ

)
γ

(
5

2
,
ai
a1

ψ

)
=

Ãi

a
3/2
i

ρ̂i(ψ), (2.31)

where Ãi = (8/3)π
√

2Ai exp [−aiΦ(ri)] and ρ̂i(ψ) = exp (ai/a1ψ)γ(5/2, ai/a1ψ).

The velocity dispersion for each component can be written as:

σ2
i (r) =

6

5ai

γ(7/2, ai/a1ψ)

γ(5/2, ai/a1ψ)
. (2.32)

The resulting dimensionless Poisson equation is:

1

ξ2

d

dξ

(
ξ2dψ

dξ

)
= −

(
ρ̂1(ψ) +

Ã2a
3/2
1

Ã1a
3/2
2

ρ̂2(ψ)

)
, (2.33)

to be solved under the boundary conditions ψ(0) = Ψ and (dψ/dξ)(0) = 0. After

the rescaling, we are left with three independent constants. To reduce the number of

parameters and thus to simplify the mathematical work, we can make the following

assumption:

• We consider models in which the total masses associated with the two compo-

nents are in a given ratio M1/M2. This can be seen as a requirement on the
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ratio of normalization factors Ã1/Ã2. In practice, for a globally self-consistent

model this constraint can be written as

Ã1a
−3/2
1

Ã2a
−3/2
2

∫ ξt
0
ρ̂1(ξ)ξ2dξ∫ ξt

0
ρ̂2(ξ)ξ2dξ

=
M1

M2

. (2.34)

For a desired mass ratio, the equation is basically a relation between the

constant Ã2a
−3/2
2 in terms of Ã1a

−3/2
1 but, due to the dependence on ρ̂i in Eq.

(2.34), solutions have to be worked out iteratively.

• We choose a given value for the single-mass ratio m1/m2 and impose partial

energy equipartition in the central regions of the system by means of a dimen-

sionless parameter η, following Trenti & van der Marel (2013) [58] (see Sect.

1.3.3). Partial central equipartition is imposed by means of the relation:

σ1(0)

σ2(0)
=

[
a2

a1

γ(7/2,Ψ)γ(5/2, ai/a1Ψ)

γ(5/2,Ψ)γ(7/2, ai/a1Ψ)

]1/2

=

(
m1

m2

)−η
. (2.35)

Full energy equipartition would correspond to η = 1/2. In the case of the

simulated systems introduced in Sect. 3.1, η will be chosen according to the

value of the velocity dispersion profile in their central regions.

In summary, two-component King models depend on five constants. With our as-

sumptions, we reduced the number of free constants to three. Two of them are used

to rescale the Poisson equation to a dimensionless form, the remaining one define an

independent dimensionless parameter, Ψ = −a1(Φ(0)−Et), as in the one-component

case.

2.2.2 Two-component f
(ν)
T models

Two-component f
(ν)
T models can be introduced in a similar way. We consider

the distribution function [16]:

f
(ν)
T,i (E, J) =

Ai exp
[
−ai(E − Et)− di J

|E−Et|3/4

]
for E < Et

0 for E ≥ Et

, (2.36)

where Ai, ai and di are positive constants for the i-th component. Also in this case

we have assumed a common truncation energy, Et. To rescale the problem to a

dimensionless form, we refer to energy and length scales associated to the lighter

component. The dimensionless radius is defined as ξ = ra
1/4
1 d1 and the dimensionless

potential ψ = −a1(Φ− Et). The mass density of each component is given by:

ρi(ξ, ψ) =
Ai

a
3/2
i

∫ π

0

∫ √ai/a1ψ

0

f̂
(ν)
T,i (ξ, ψ, ω, ζ)ω2 sin ζdζdω =

Ai

a
3/2
i

ρ̂i(ξ, ψ), (2.37)
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where

f̂
(ν)
T,i (ξ, ψ, ω, ζ) = 4

√
2π exp

[
−ω2 +

ai
a1

ψ − dia
1/4
i

d1a
1/4
1

√
2ξω sin ζ

|ω2 − ai/a1ψ|3/4

]
. (2.38)

The radial and tangential velocity dispersions for each component are:

σ2
r,i(ξ, ψ) =

2

ai

1

ρ̂i

∫ π

0

∫ ai/a1
√
ψ

0

f̂
(ν)
T,i (ξ, ψ, ω, ζ)ω4 cos2 ζ sin ζdζdω, (2.39)

σ2
T,i(ξ, ψ) =

2

ai

1

ρ̂i

∫ π

0

∫ √ai/a1ψ

0

f̂
(ν)
T,i (ξ, ψ, ω, ζ)ω4 sin3 ζdζdω. (2.40)

The resulting dimensionless form of the Poisson equation (Eq. (1.10)) is given by:

1

ξ2

d

dξ

(
ξ2dψ

dξ

)
= −1

γ

(
ρ̂1 +

A2

A1

a
3/2
1

a
3/2
2

ρ̂2

)
, (2.41)

where γ = a1d
2
1/(4πGA1). To reduce the number of parameters, we can make the

following assumptions:

• We consider models with fixed total mass ration M1/M2:

A1a
3/2
2

A2a
3/2
1

∫ ξt
0
ρ̂1(ξ)ξ2dξ∫ ξt

0
ρ̂2(ξ)ξ2dξ

=
M1

M2

. (2.42)

The procedure requires iteration.

• We chose a given value for the single-mass ratio m1/m2 and impose partial

energy equipartition in the central regions of the system by means of a di-

mensionless parameter η, like in Sect. 2.2.1. In this case, partial central

equipartition is imposed by means of the relation:

σ1(0)

σ2(0)
=

[
a2

a1

γ(5/2,Ψ)γ(3/2, a2/a1Ψ)

γ(3/2,Ψ)γ(5/2, a2/a1Ψ)

]1/2

=

(
m1

m2

)−η
. (2.43)

Note that at r = 0 the distribution function of the i-th component is simple,

because the dependence on J drops out and Φ = Φ(0), so that Eq. 2.43 is

expressed in closed form only in terms of the relevant constants and of the

concentration parameter Ψ = −a1(Φ(0)− Et).

• Following De Vita, Bertin & Zocchi (2016) [16], we assume that the radial

scales which define the size of the radially biased anisotropic outer envelope

are the same for the two components, that is:

d2a
1/4
2 = d1a

1/4
1 . (2.44)
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This qualitative argument was meant to recognize that one of the possible

causes of radially-biased pressure anisotropy is incomplete violent relaxation,

which is a collisionless relaxation process that acts in the same way on stars

of different masses. In the simulations that we are going to consider (see Sect.

3.1), the initial velocity distribution is isotropic (it is drawn from a Plummer

model, see Sect. 2.1.1) and anisotropy slowly develops in the course of time

because of collisionality by means of the process described in Sect. 1.4.1. Here

we keep this assumption in order to simplify our calculations.

The self-consistent problem for two-component f
(ν)
T models depends on seven con-

stants. Two of them are used to rescale the Poisson equation to a dimensionless

form, and three are fixed by our assumptions. The remaining two define two in-

dependent dimensionless parameters. As in the one-component models, we use as

independent structural parameters Ψ = −a1(Φ(0)− Et) and γ = a1d
2
1/(4πGA1).

2.2.3 Mass segregation and energy equipartition in two-

component models

Concentration parameters

For the two-component King models introduced in Sect. 2.2.1 the ratio between

central densities is given by

ρ1(0)

ρ2(0)
=
A1a

3/2
2

A2a
3/2
1

eΨγ(5/2,Ψ)

ea2/a1Ψγ(5/2, a2/a1Ψ)
, (2.45)

whereas for the two-component f
(ν)
T models (Sect. 2.2.2) it corresponds to:

ρ1(0)

ρ2(0)
=
A1a

3/2
2

A2a
3/2
1

eΨγ(3/2,Ψ)

ea2/a1Ψγ(3/2, a2/a1Ψ)
. (2.46)

Under the conditions listed in the previous sections, these quantities are expected

to fall below unity from a simple picture of mass segregation, in which the central

parts should be dominated by the heavier components. There are several ways of

defining the concentration of a given density profile. De Vita, Bertin, Zocchi (2016)

[16] considered two possible definitions; the ratio rh1/rh2 of the half-mass radii of

the two components and the ratio of the density contrasts of the lighter component

ρ1(0)/ρ1(rh1) to that of the heavier component ρ2(0)/ρ2(rh2). They plotted these

quantities for different values of Ψ and γ (Fig. 2.4) and noticed that only rh1/rh2

exceeds unity for all the models considered. Thus they argue that rh1/rh2 is the

more natural parameter to be used to describe the relative concentration of the two
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Figure 2.4: Relative concentrations of the two components of f
(ν)
T models as a func-

tion of Ψ, for selected values of γ. The upper set of curves represents the ratio

rh1/rh2 of the half-mass radius of the lighter component to the half-mass radius of

the heavier component. The lower set represents the ratio of the density contrast pa-

rameters [ρ1(0)/ρ1(rh1)]/[ρ2(0)/ρ2(rh2)]. Figure from De Vita, Bertin, Zocchi (2016)

[16].

components. I repeated the same procedure for the two-component King models,

evaluating the two different concentration estimates for different values of Ψ. The

result is illustrated in Fig. 2.5. Also in this case, rh1/rh2 exceeds unity for all the

models considered whereas the density contrast [ρ1(0)/ρ1(rh1)]/[ρ2(0)/ρ2(rh2)] falls

below unity at sufficiently high values of Ψ, confirming the statement that the former

quantity is a more natural parameter to describe the relative concentration of the

two components in these models.

Isothermal approximation

Multi-component models represent a simple tool to take into account energy

equipartition. Traditionally, application of multi-component models has been con-

structed as an extension of King models. In such models global equipartition (Eq.

(1.29)) cannot hold because the relevant distribution function is not a Maxwellian.

As noted earlier, in Sect. 1.3.3, a global equipartition would be unrealistic for glob-

ular clusters because in their outer regions the relaxation time is too long. However,

a certain degree of equipartition is naturally expected to occur where the relaxation
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Figure 2.5: Relative concentrations of the two components of King models as a

function of Ψ. The solid line represents the ratio rh1/rh2 of the half-mass radius of the

lighter component to the half-mass radius of the heavier component. The dashed line

represents the ratio of the density contrast parameters [ρ1(0)/ρ1rh1]/[ρ2(0)/ρ2rh2].

time is shortest. Partial central energy equipartition can be correctly implemented

by means of Eq. (2.35) (or Eq. (2.43), if we consider f
(ν)
T models) with a suitable

choice of η.

Some authors (e.g. Da Costa & Freeman (1976) [15]; Gunn & Griffin (1979) [26])

tried to impose full energy equipartition setting:

ai/aj = mi/mj. (2.47)

Such assumption is often referred to as isothermal approximation (or IA) [41]. This

notation and the related choice reflect the fact that a/m = 1/(kBT ) in a Maxwell-

Boltzmann distribution function (Eq. (2.7)).

One of the first examples of application of the isothermal approximation was

given by Da Costa & Freeman (1976) [15]. Because a single-mass King model could

not give a satisfactory description of the brightness profile of globular cluster M3, the

authors referred to a multi-component approach based on ten components. Each

component was meant to represent a class of stars the luminosity of which was

inferred from the luminosity function of the cluster. A representative mass value

was assigned to each class of stars to obtain an appropriate M/L ratio. In order to

limit the number of free parameters, Da Costa & Freeman decided to impose Eq.

(2.47). For M3, the core relaxation time (Eq. (1.19)) is about trc ≈ 1.0×108 yr, and
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trh ≈ 1.0× 1010 yr [27]. A model for the cluster was constructed by varying the Ai

parameters and the central potential. Density profiles obtained were then projected

along the line-of-sight and, by means of the M/L ratio of each class, a brightness

profile for every component was constructed and compared to the data. The best-fit

model is illustrated in Fig. 2.6; we notice a much better agreement with data with

respect to the one-component best-fit model. No kinematic test was made on the

system.

Figure 2.6: Comparison between best-fit models of the photometric profile of M3. In

the left panel the best-fit result one-component model is illustrated. The right panel

shows performance of the best-fit result with ten components. A better agreement

of the multi-component model with data is evident. Units for surface brightness is

the number of stars with magnitude 10.00 in the V-band per arcsec2. Figure from

Da Costa & Freeman (1976) [15].

As pointed out by various authors (e.g. Merritt (1981) [39]; Kondrat’ev & Oz-

ernoy (1982) [35]; Miocchi (2006) [41]), strictly speaking, the choice of ai param-

eters made by Da Costa & Freeman does not actually imply central equipartition

between stars of different mass in King models. To show this, I considered the two-

component King models introduced in Sect. 2.2.1 and, instead of imposing central

energy equipartition by means of Eq. (2.35), I considered a2/a1 = m2/m1 = 2. I

solved the self-consistent problem (Eq. (2.33)) with different values of Ψ between

1 < Ψ < 6. The ratio of velocity dispersions at the center of the system can be
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evaluated directly from Eq.(2.32):

σ2
1(0)

σ2
2(0)

=
a2

a1

γ(7/2,Ψ)γ(5/2, a2/a1Ψ)

γ(5/2,Ψ)γ(7/2, a2/a1Ψ)
. (2.48)

I also computed global velocity dispersion (defined in Eq. 1.28) inside the half-mass

radius rh and inside rt. In case of full equipartition, as supposed by Da Costa &

Freeman, the ratio of velocity dispersions would be expected to be equal to m2/m1,

at least at the center of the model. Results of my calculation are presented in

Fig. 2.7. Setting a2/a1 = m2/m1 does not imply energy equipartition for multi-
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Figure 2.7: Ratio between velocity dispersions in two-component King models for

the case m2 = 2m1. The solid line represents the local velocity dispersion ratio at

the center of the system. The dashed line represents the global velocity dispersion

ratio at the half-mass radius. The dotted line represents global velocity dispersion

ratio at rt. We can notice that strict equipartition can’t be attained either locally or

globally inside the system. A condition of energy equipartition would be recovered

locally at the center of the system for very large values of Ψ.

component King models, either in local sense, at the center, or in the global sense;

the so-called isothermal approximation would imply energy equipartition in case

of Maxwell-Boltzmann distributions, but it does not so for King models. Deviation

from equipartition is due to the presence of a truncation term in the King distribution

function. The central ratio of velocity dispersions in Fig 2.7 tends to approach a

condition of energy equipartition for large values of Ψ. In fact, if we consider King

models with Ψ � 1 the presence of the truncation term has a negligible role at
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the center where isothermality is recovered. In the limit for Ψ → ∞, Eq. (2.48)

becomes:

lim
Ψ→∞

σ2
1(0)

σ2
2(0)

= lim
Ψ→∞

a2

a1

γ(7/2,Ψ)γ(5/2, a2/a1Ψ)

γ(5/2,Ψ)γ(7/2, a2/a1Ψ)
=
a2

a1

Γ(7/2)

Γ(5/2)

Γ(5/2)

Γ(7/2)
=
a2

a1

, (2.49)

which follows directly from the definition of incomplete gamma function (limx→∞ γ(s, x) =

Γ(s)). In this case ai/aj = mi/mj implies σ2
1(0) = σ2

2(0) (so that the so-called

isothermal approximation implies energy equipartition at the center of the system).

As to global equipartition, deviation from equipartition is evident both inside rh

and rt, also for large Ψ.

2.2.4 Hydrostatic and Virial Equilibrium

A general property of self-gravitating systems without bulk motions (u = 0) is

hydrostatic equilibrium. This condition consists of a balance between the pressure

gradient and the mean gravitational field. Hydrostatic equilibrium can be derived

directly by integrating Eq. (1.3) in velocity space, that is by considering one of the

moment equations of the collisionless Boltzmann equation. We focus on hydrostatic

equilibrium in spherical systems. In spherical coordinates, if we multiply by vr Eq.

(1.3) and integrate over velocity space we obtain:

ρ
∂ur
∂t

+
∂

∂r
(ρ〈vrvr〉) +

1

r

∂

∂θ
(ρ〈vθvr〉) +

1

r sin θ

∂

∂φ
(ρ〈vφvr〉) +

− 1

r

(
〈v2
θ〉+ 〈v2

φ〉
)

+ ρ
∂Φ

∂r
+ 2

ρ

r
〈vrvr〉+ ρ cot θ

〈vθvr〉
r

= 0,

(2.50)

where 〈vivj〉 = σ2
ij + uiuj are the second moments of velocity. If we consider sta-

tionarity (∂/∂t = 0) and spherical symmetry (∂/∂θ = ∂/∂φ = 0), uθ = uφ = 0 and

cot θ = 0 (no angular dependence), Eq. (2.50) becomes:

∂

∂r
(ρ〈vrvr〉)−

ρ

r

(
〈v2
θ〉+ 〈v2

φ〉
)

+ ρ
∂Φ

∂r
+ 2

ρ

r
〈vrvr〉 = 0. (2.51)

Hydrostatic equilibrium is recovered under the assumption of no bulk motions (so

that ur = 0). In this case, Eq. (2.51) gives:

d

dr

[
ρ(r)σ2

r(r)
]

+ ρ(r)α(r)
σ2
r(r)

r
= −ρ(r)

dΦ(r)

dr
= −GM(r)

r2
ρ(r), (2.52)

where α is the local anisotropy parameter, defined in Eq. (1.16). This is an equi-

librium condition obtained directly from the collisionless Boltzmann equation (Eq.

(1.3)). All models introduced in Sect. 2.1 and in Sect. 2.2 are based on the Jeans

theorem (i.e. they are solutions of collisionless Boltzmann equation), thus they must
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be in hydrostatic equilibrium. In particular, we prove this condition analytically for

King models. As these models are isotropic, α = 0 and the left-hand side of Eq.

(2.52) becomes:

1

ρ

d

dr
(ρσ2) =

2

5

Ã

a5/2λ

d

dξ

[
eψγ

(
7

2
, ψ

)]
=

2

5

Ã

a5/2λ

dψ

dξ

d

dψ

[
eψγ

(
7

2
, ψ

)]
, (2.53)

where we have used the definitions (2.17) and (2.18). The derivative of incomplete

γ function is given by (∂/∂x)γ(s, x) = x(s−1)e−x [1]:

1

ρ

d

dr
(ρσ2) =

2

5

Ã

a5/2λ
eψ
dψ

dξ

[
γ

(
7

2
, ψ

)
+ ψ5/2eψ

]
=

Ã

a5/2λ
eψγ

(
5

2
, ψ

)
dψ

dξ
, (2.54)

where in the last step we have used the relation γ (s+ 1, x) = sγ (s, x)− xse−x [1].

The right-hand-side of Eq. (2.52) can be written as

− ρdΦ

dr
=

Ã

a5/2λ
ρ̂
dψ

dξ
=

Ã

a5/2λ
eψγ

(
5

2
, ψ

)
dψ

dξ
, (2.55)

which is exactly the result obtained in Eq. (2.54). We conclude that the King

models satisfy hydrostatic equilibrium as expected. In the case of multi-component

models, Eq. (2.52) is satisfied by each component, that is by each fi.

Kondrat’ev & Ozernoy (1982) [35] claimed that the isothermal apppoximation, as

formulated by Da Costa & Freeman (1976) [15], was inconsistent with the assump-

tion of isothermal equilibrium. They proposed an alternative distribution function

characterized by a parameter β, equal for all components, which, in their opinion,

would enforce hydrostatic equilibrium:

fi(E) =

Ai
(

exp (−mi

βh
E)− exp (−mi

βh
Et)
)

for E < Et

0 for E ≥ Et.
(2.56)

Note that βh has the dimensions of energy. As shown above in this section, multi-

component King models satisfy hydrostatic equilibrium, independently of the isother-

mal approximation. In fact, Kontrat’ev & Ozernoy result was made on incorrect

normalization in the definition of velocity dispersions. Moreover, constant βh in the

distribution function (Eq. (2.56)) plays exactly the same role as isothermal approx-

imation Eq. (2.47): βh = mi/ai. The assumption expressed by Eq. (2.47) is exactly

the same as requiring a constant βh.

Virial Theorem

Virial equations can be obtained by taking moments of the fluid equations with

respect to the spatial coordinates and by integrating over the volume occupied by
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the system under investigation. Here we report the second order virial equations,

obtained by integrating over dV the j-th of the fluid equations multiplied by xi. The

time-dependent equations can be written as [7]:

1

2

d2Iij
dt2

= 2Tij +Wij + Πij, (2.57)

where the inertia tensor Iij, the kinetic-energy tensor Kij and the gravitational-

energy tensor Wij are given by

Iij =

∫
ρxixjdV, (2.58)

Tij =
1

2

∫
ρuiujdV (2.59)

Wij =

∫
ρxi

∂

∂xj

(
G

∫
ρ(x′)

|x− x′|
dV ′
)
dV, (2.60)

and the pressure contribution is given by

Πij =

∫
pijdV. (2.61)

We obtain the standard scalar virial constraint W + 2K = 0 (Eq.(1.25)), with

K = T + Π/2, for a stationary system by taking the trace of the preceding tensor

relations in the time-independent case. The total kinetic energy includes a part

associated with the kinetic energy of random motions (i.e. the pressure term) and

a part associated with the kinetic energy of fluid motions. The virial condition (Eq.

(1.25)) states, at equilibrium, how energy is present in various forms. A cold system

is one for which the balance is primarily between W and the kinetic energy of fluid

motions T , whereas a hot system is one for which the balance is mostly between W

and the internal kinetic energy in the form of random motions.

We now define a virial coefficient as

κ =
2K

|W |
, (2.62)

which, for a system in virial equilibrium, should equal unity. For the models intro-

duced in Sect. 2.1 and Sect. 2.2, the virial equilibrium condition can be used to test

the accuracy of the numerical code used in the construction of the models. For our

spherical models, the virial condition is given by

κ =

∫ rt
0
ρ(r)σ2(r)r2dr

G
∫ rt

0
M(r)ρ(r)rdr

= 1, (2.63)

for one-component models, and

κ =

∫ rt
0

[ρ1(r)σ2
1(r) + ρ2(r)σ2

2(r)]r2dr

G
∫ rt

0
[M1(r) +M2(r)][ρ1(r) + ρ2(r)]rdr

= 1, (2.64)
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in the case of two-component models. For accurate codes, deviations from unity of

the order of 10−5 − 10−7 are expected.

Hydrostatic and virial equilibrium conditions can be used as tests in the field of

numerical simulations. In Sect. 3.1.1 we will use them to prove the quality of the

Monte Carlo simulations under consideration.

2.3 The Spitzer “instability”

We consider the problem of thermodynamical equilibrium in a cluster in which

more massive stars become more concentrated in the inner regions as a result of

tendency toward energy equipartition. We examine, under some simplifying as-

sumptions, which conditions have to be satisfied for attain thermal equilibrium,

characterized by global energy equipartition to be established. The hypotheses and

results here reported have been discussed by Spitzer (1969) [48] and reworked by

Cova (2014) [14].

To simplify the discussion, stars of only two masses, m1 and m2 (as usual index

1 refers to the lighter population) are considered. The total masses of the two

populations of stars are M1 and M2. The virial equilibrium for a two-component

system implies:

2K1 +W1 +W21 = 0, (2.65)

2K2 +W2 +W12 = 0. (2.66)

The meaning of the terms introduces above (in Eq. (2.65) and Eq. (2.66)) is the

following:

• K1, K2 are the kinetic energies of the individual components (1 and 2, respec-

tively).

• W1, W2 are the gravitational energies of the individual components (1 and 2,

respectively).

• W12, W21 are exchange energies; they represent the gravitational energies as-

sociated with the interaction of component 1 on component 2 and vice-versa.

Virial equations (Eq. (2.65) and Eq. (2.66)) can be simplified by making some

assumptions. We consider the case in which the total mass of the light component is

much larger than that of the heavy component, M1 �M2. In addition, we consider

the case in which m2 � m1; as a consequence we expect that, because of mass

segregation, the density of heavy stars at the center of the system, ρ2(0), should be
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much larger than density of light stars, ρ1(0). This assumption, as we will see later

(in Sect. 2.3.1), has been criticized by Merritt (1981) [39].

It is now possible to estimate the exchange terms: as M2 �M1, the interaction

term of the heavy component on the light one will be negligible, that is W21 ≈ 0.

Thus Eq. (2.65) becomes 2K1 = −W1. Under spherical symmetry, it can be written:

M1Σ2
1 = 4π

∫ ∞
0

ρ1r
3dΦ1

dr
dr ≈ GM2

1

rh1

. (2.67)

where rh1 is the half-mass radius of the light component, where Σ2
1 is the global

square velocity dispersion of the light component (defined in Eq. (1.28)).

In order to estimate the term W12, we can assume that the density of light stars

is constant in the very small region where most of heavier stars are located, that

is ρ1(r) ≈ ρ1(0) ≡ ρ01. The gravitational potential Φ1 associated with a constant

density ρ01 is given by Φ1 = (2π/3)Gρ01r
2. We can now calculate W12:

W12 = −4π

∫ ∞
0

ρ2r
3dΦ1

dr
dr = −4π

∫ ∞
0

ρ2r
3

[
4π

3
Gρ01r

]
dr. (2.68)

If we note that

M2 =

∫ ∞
0

4πρ2r
2dr, (2.69)

the exchange term can be rewritten as:

W12 = −4π

3
M2Gρ01〈r2

2〉, (2.70)

where we have indicated with 〈r2
2〉 the mean value of r2 for stars of mass m2. We

now write the virial equation for the heavy component as:

Σ2
2 =

GM2

rh2

+
4π

3
Gρ01〈r2

2〉, (2.71)

where Σ2
2 is the square velocity dispersion of the second component, defined in Eq.

(1.28).

In order to find a criterion for the establishment thermodynamical equilibrium,

we assume a condition of energy equipartition by means of the relation:

m1Σ2
1 = m2Σ2

2. (2.72)

This is a condition of global energy equipartition (like Eq. (1.29)), as it involves

global estimates of velocity dispersion. This condition, as already anticipated in

Sect. 2.2.3, cannot be considered realistic for globular clusters for a number of

reasons. We may expect that an equipartition condition can be realized only in

the innermost regions where a distribution close to Maxwell-Boltzmann distribution
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is likely to be established (as in the case of concentrated King models). Spitzer

discussion [48] would remain unchanged by confining its relevance to the innermost

regions, as suggested by Merritt (1981) [39]. However, as shown by means of many

numerical simulations [58] [12], even in the innermost regions a condition of only

partial energy equipartition can be attained (see Sect. 1.3.3), thus making Spitzer

assumption not realistic for globular clusters. If we substitute in Eq. (2.72) relations

obtained for Σ2
1 (Eq. (2.67)) and Σ2

2 (Eq. (2.71)):

m1M1

rh1

= m2

(
M2

rh2

+
4π

3
ρ01〈r2

2〉
)

; (2.73)

If ρh1 represents the mean density of the stars of mass m1 within the sphere of radius

rh1, we can write (1/2)M1 = (4π/3)ρh1r
3
h1 so that:

m1
M1

rh1

= m2

(
M2

rh2

+
1

2
M1

ρ01

ρh1

〈r2
2〉
r3
h1

)
. (2.74)

We then introduce a dimensionless parameter α, similar to that introduced by

Spitzer2

α =
1

2

ρ01

ρh1

〈r2
2〉
r2
h2

, (2.75)

and write Eq. (2.74) in the form:

m1
M1

rh1

= m2

(
M2

rh2

+M1α
r2
h2

r3
h1

)
. (2.76)

From the definition of the half-mass radius, we have (rh2/rh1)3 = (M2/M1)(ρh1/ρh2)

and obtain:
M2

M1

(
m2

m1

)3/2

=
(ρh1/ρh2)1/2

(1 + α ρh1/ρh2)3/2
≡ S. (2.77)

Equation (2.77) derives from the assumptions of virial and thermodynamical equi-

librium, without considering any dynamical model explicitly.

By varying ρh1/ρh2 and keeping α constant, S assumes a maximum value Smax =

0.24α−1/2. By considering a Maxwellian distribution with a parabolic potential re-

sulting from the assumption of constant ρ01, we find 〈rh2〉/rh2 = 1.13. The ratio

ρ01/ρh1 entering in the definition of α is instead more variable, and increases from

2.5 to 4.4 for polytropes with index n between 3 and 5; in his discussion Spitzer

[48] chooses ρ01/ρh1 = 3.5. These values lead to α ≈ 2.2 and Smax ≈ 0.16. Equa-

tion (2.77) thus expresses a necessary equilibrium condition for systems in global

equipartition of energy:

M2

M1

(
m2

m1

)3/2

= S < Smax = 0.16. (2.78)

2Spitzer uses a numerical factor 5/4 instead of 1/2: 5/4 is suggested by numerical studies on

globular clusters, performed by Spitzer on the basis of observed data [49].
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The criterion expressed in Eq. 2.78 is often called Spitzer instability, even if it

expresses an equilibrium condition and not a stability condition.

We stress that this result is valid when m2 is much greater than m1, so that

we can assume that heavy population is so concentrated at the center that the

approximation ρ1(r) ≈ ρ1(0) is applicable. In addition, we have considered the case

M1 � M2 in which the effect of the gravitational potential of the heavy stars on

most of the light stars can be considered negligible (W21 ≈ 0). We notice that this

derivation is based on heuristic considerations which ignore self-consistency. As we

will see in Sect. 2.3.1, when self-consistency is considered, this criterion is no longer

applicable.

We can now wonder what happens if condition expressed in Eq. (2.78) is not

fulfilled. In this case Spitzer argues that heavy stars should continue to lose energy

to the light ones and, if the total mass of the heavy component is sufficiently high, he

imagines a situation in which the nucleus of the cluster goes on contracting because

of a failed redistribution of kinetic energy. Falling in towards the center, heavy

stars will tend to acquire kinetic energy, increasing the departure from equipartition

condition and determining a successive collapse of the nucleus [49]. It is important

to notice that this collapse is different from a gravothermal collapse (Sect. 1.3.2),

because the latter process does not require the presence of stars with different masses.

2.3.1 A discussion of the Spitzer criterion

The Spitzer criterion suggests that virial and thermal equilibrium is impossible

to be attained simultaneously by some configurations. The specification, expressed

by Eq. (2.78) depends on the assumption that the dimensionless parameter α can

be considered approximately constant. Spitzer focuses on a value of α ≈ 2.2 starting

from polytropic models, with relatively small variations of the relevant polytropic

index. As shown by Merritt (1981) [39], this assumption is not be always justified.

In particular, Merritt observes that the ratio ρ01/ρh1 could vary significantly and

that the values considered by Spitzer are representative only of less concentrated

clusters (see Tab. 2.1).

In order to test the validity of the Spitzer result (Eq. (2.78)), Merritt rewrote

Eq. (2.76) (using equipartition condition in Eq. (2.72)) in the following way:

αR̃3 − Σ̃2R̃2 + M̃ = 0, (2.79)

where he introduced the quantities R̃ = rh2/rh1, Σ̃2 = Σ2
2/Σ

2
1 = m1/m2 and M̃ =

M2/M1. He then studied the relation in the (log M̃, log R̃) plane for the value α = 2.2

and Σ̃2 = 0.1. It is reasonable to suppose that there exists a minimum value for
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Ψ ρ01/ρh1

1 2.39

2 2.72

3 3.14

4 3.84

5 5.91

6 9.23

7 19.1

8 78.6

9 4.39

10 1.88× 103

12 1.46× 104

15 1.91× 105

Table 2.1: Variation of ρ01/ρh1 for one-component King models. Table from Merritt

(1981) [39]

α (Eq. (2.75)), as ρ01/ρh1 cannot be less than unity and 〈rh2〉/rh2 is generally

approximately constant. Equation (2.79) implies, together with the existence of a

minimum value for α, the existence of a maximum for M̃ , which Merritt calls M̃0.

This fact might suggest that the initial interpretation of Spitzer could be justified

by substituting α with its minimum value αmin. He also constructed a set of two-

component self-consistent King models, for which he studied the relation between

M̃ and R̃ by setting m̃ = m2/m1 = 10. We can notice that the mass ratio is higher

than values which are found in our definition of components in Sect. 3.3.2, where

m̃ = 2. In Fig. 2.8, R̃ is shown as a function of M̃ for fixed Σ̃2 = 0.1, both for

solutions of Eq. (2.79) (thin lines) and for two-component King models (thick lines).

Solutions for two-component King models are not limited to a maximum value of

M̃ ; curves obtained for constant α tend to separate from that based on Eq. (2.79)

and continue for higher values, where solutions tend to converge to a unique curve.

Thus, the request for self-consistency, by means of the choice of King distribution

functions, allows the existence of systems in thermal and virial equilibrium for every

value of M̃ . In Sect. 3.3.2 we will see how the application of the Spitzer criterion to

realistic simulated systems actually leads to inconclusive results, because it is based

on assumptions which are not realized in real systems.
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Figure 2.8: Thick lines represent equilibrium configurations for two-components

King models with m̃ = m2/m1 = 10. Ratio between velocity dispersion was set

to Σ̃2 = 0.1 = m1/m2. Thin lines represent solutions to Eq. (2.79) with α ≈ 2.2.

We can see that equilibrium configurations for two-components King models are not

limited do a maximum value of M̃ for sufficiently high values of α, as opposed to

solution of Eq. (2.79). Figure from Merritt (1981) [39].

2.4 The Vishniac criterion

Vishniac (1978) [61] attempted to generalize the analysis by Spitzer to systems

containing a continuous distribution of masses, deriving a necessary but not sufficient

condition for isothermal equilibrium in a globular cluster. The assumptions and

results reported here are taken from Vishniac (1978) [61].

We consider a spherical symmetric system characterized by a continuous spec-

trum of mass. The basic assumption is that the density profile of stars with mass

m is proportional to a single function α[r/R(m)], where R(m) is the characteristic

length scale factor for stars with mass m. The function α(x) is taken to be the same

for all masses; this corresponds to the assumption that all stellar mass groups have

homologous density profiles (see Sect. 2.4.1).

We consider the following assumptions: R(m) is a continuous function which

decreases with mass. Although Vishniac does not give an explicit definition of R(m),

this represents the length scale for stars with mass m and thus we realistically expect

that stars with higher masses are more concentrated and characterized by a lower

value of R(m). We also assume that the function α(x) is a decreasing function of x,
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that is the density profile is a decreasing function of radius. Finally, we assume that

g(m), that in this case represents the mass spectrum, presents a minimum mass,

which we call m1.

Let the mass contained in stars with masses in the range (m,m+dm) be g(m)dm.

Moreover let ρm(r)dm be the mass density at radius r of stars with masses in the

range (m,m+ dm). The function α[r/R(m)] is defined by the following relation:

ρm(r) =
g(m)

R3(m)
α[r/R(m)], (2.80)

with α(x) which satisfies the normalization condition:

1 = 4π

∫ ∞
0

x2α(x)dx. (2.81)

Equation (2.81) requires that, for every interval (m,m + dm), the volume integral

of P (r,m) = ρm(r)/g(m), that is the probability of finding a star with mass m at a

distance between r e r + dr, is normalized to 1.

We may apply the virial theorem to each group of stars of mass (m,m+ dm) to

obtain the average kinetic energy Km of stars in this range of mass:

2Km = 4π

∫ ∞
0

GM(r)m

r
ρm(r)r2dr. (2.82)

where M(r) is the mass contained inside a sphere of radius r, which, from Eq. (2.80),

can be written:

M(r) =

∫ ∞
0

g(m′)dm′
∫ r/R(m′)

0

4πx2α(x)dx, (2.83)

By substituting Eq. (2.80) inside Eq. (2.82) and writing Km = (1/2)mΣ2(m), where

Σ2(m) is the velocity dispersion of all stars of mass m, we obtain:

mΣ2(m) =
4πGm

R3(m)

∫ ∞
0

M(r)α[r/R(m)]rdr. (2.84)

We may substitute Eq. (2.83) inside Eq. (2.84) and integrate by parts to obtain:

KV ≡
mΣ2(m)

G
=

4πGm

R(m)

∫ ∞
0

g(m′)

[
f(∞)−

∫ ∞
0

f

(
x
R(m′)

R(m)

)
x24πα(x)dx

]
dx,

(2.85)

where

f(a) ≡
∫ a

0

xα(x)dx. (2.86)

The assumption that the cluster is in a state of thermal equilibrium is expressed

by means of the request that KV = mΣ2(m)/G is not a function of m. The cluster
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will be unable to reach equilibrium if g(m) is such that there do not exist functions

α(x) and R(m) that satisfy reasonable constraints and for which KV is constant.

We can easily notice that, like in Spitzer derivation (Sect. 2.3), Σ2(m) is a velocity

dispersion defined starting from the virial theorem and thus a global quantity for the

system (it is calculated on all the stars of the system inside a certain, infinitesimal,

range of mass). Energy equipartition condition is, in this case, a global condition,

which is not realistic for globular clusters, even in the innermost regions, where only

partial energy equipartition is expected.

In order to establish constraints on the function R(m), we consider some inequal-

ities generated by equation (2.85) (hereafter ′ ≡ d/dm):(
KV

mR2(m)

)′
=− 4πR′

R4(m)

∫ ∞
0

g(m′)

{
3

∫ ∞
0

∫ ∞
xR(m′)/R(m)

yα(y)dy4πx2α(x)dx−

R2(m′)

R2(m)

∫ ∞
0

α[xR(m′)/R(m)]α(x)4πx4dx

}
dm′,

(2.87)

which can be written, integrating by parts:

KV

[
1

mR2(m)

]′
=− 4πR′

R4(m)

∫ ∞
0

g(m′)

{∫ ∞
0

[
3

∫ x

0

4πy2α(y)dy − 4πx3α(x)

]
xα[xR(m′)/R(m)]dx

}
R2(m′)

R2(m)
dm′,

(2.88)

Now:

3

∫ x

0

y24πα(y)dy = x34πα(x)−
∫ x

0

y34πα′(y)dy ≥ x34πα(x), (2.89)

where we have used the assumption α(x) ≤ 0. So, because R′(m) < 0, we see that

Eq. (2.88): (
1

mR2(m)

)′
> 0. (2.90)

As m1 is the mass of the least massive star of the system, Eq. (2.90) implies that:

R(m)

R(m1)
<

(
m

m1

)3/2

. (2.91)

From the virial theorem (Eq. (2.85)) we can find a lower bound on KV :

KV <
8π

3

m1M

R(m1)
f(∞). (2.92)

From the virial theorem (Eq. (2.85)) we can also find a lower bound on KV :

KV >
4πm

R(m)
M>

[
f(∞)−

∫ ∞
0

f(x)x24πα(x)dx

]
, (2.93)
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where M> is the mass contained in stars with mass greater than m. Using the

bounds on K established in Eq. (2.92) and Eq. (2.93), we can find:

R̃ > βm̃M̃, (2.94)

with m̃ = m/m1, R̃ = R(m)/R(m1), M̃ = M>/M and:

β =
3

2

∫∞
0

∫∞
x
yρ(y)dy4πx2ρ(x)dx∫∞

0
xρ(x)dx

. (2.95)

The constant β is a function of the assumed profile α(x) but does not vary greatly.

For α(x) constant for x ≤ 1 and zero for x > 1 we obtain β = 0.6. For α ∝ (1−x)N

for x ≤ 1 we obtain β ≈ 0.57 if N = 1 and β → 0.47 when N → ∞. Choosing

α ∝ e(−x) we get β ≈ 0.47. The narrow range of values suggests that β ≈ 0.5 should

be an adequate approximation. Finally we can combine Eq. (2.94) and Eq. (2.91)

to obtain the so-called Vishniac criterion:

1 > βm̃3/2M̃, (2.96)

which is directly analogous to Spitzer result (1969) [48] (see Sect. 2.3).

2.4.1 A discussion of the Vishniac criterion

Vishniac criterion in the two-component case

With the formalism introduced in Sect. 2.4 we can write, for a two-components

system with masses m1 and m2:

g(m) = M1δ(m−m1) +M2δ(m−m2), (2.97)

ρm(r) = ρ1(r)δ(m−m1) + ρ2(r)δ(m−m2), (2.98)

where ρ1 and ρ2 are mass densities of the two components. The total mass is

Mtot =

∫ ∞
0

g(m)dm = M1 +M2. (2.99)

By integrating over m, we have the total density profile:

ρ(r) =

∫ ∞
0

ρm(r)dm =
M1

R3
1

α

(
r

R1

)
+
M2

R3
2

α

(
r

R1

R1

R2

)
= ρ1(r) + ρ2(r), (2.100)

where ρ1(r) = M1/R
3
1α(r/R1) and ρ2(r) = M2/R

3
2α(r/R2). We now derive Vishniac

criterion in the discrete case with two components. The mean kinetic energies for

the two components can be written, following Vishniac derivation:

m1Σ2
1 =

4πGm1

R3
1

∫ ∞
0

M(r)α(r/R1)rdr, (2.101)
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m2Σ2
2 =

4πGm2

R3
2

∫ ∞
0

M(r)α(r/R2)rdr, (2.102)

where Σ2
i is the global velocity dispersion (defined in Eq. (1.28)) of the i-th compo-

nent, and M(r) is the total mass contained inside r. We can define:

KV,1 =
m1Σ2

1

G
=

4πm1

R3
1

∫ ∞
0

M(r)α(r/R1)rdr, (2.103)

KV,2 =
m2Σ2

2

G
=

4πm2

R3
2

∫ ∞
0

M(r)α(r/R2)rdr. (2.104)

Vishniac assumption of global energy equipartition becomes KV,1 = KV,2. In addi-

tion, the request that R′(m) < 0 can now be written as R1 > R2. We now consider:

KV,1

m1R2
1

− KV,2

m2R2
2

=
4π

R5
1

∫ ∞
0

rM(r)

[
α(r/R1)−

(
R1

R2

)5

α(r/R2)

]
dr

< Mtot
4π

R5
1

∫ ∞
0

r

[
α(r/R1)−

(
R1

R2

)5

α(r/R2)

]
dr.

(2.105)

If we calculate: ∫ ∞
0

rα(r/R1)dr = R2
1

∫ ∞
0

xα(x)dx = R2
1f(∞), (2.106)

where f(∞) =
∫∞

0
xα(x)dx, and∫ ∞
0

rα(r/R2)dr = R2
2

∫ ∞
0

xα(x)dx = R2
2f(∞), (2.107)

thus Eq. (2.105) can be written:

KV,1

m1R2
1

− KV,2

m2R2
2

< Mtot
4π

R3
1

f(∞)

[
1−

(
R1

R2

)3
]
< 0, (2.108)

as R1 > R2. Equation (2.108) implies, in condition of equipartition (KV,1 = KV,2):

1

m1R2
1

− 1

m2R2
2

< 0, (2.109)

and thus
R2

R1

<

(
m2

m1

)−1/2

, (2.110)

which is analogous to Eq. (2.91). We can now consider an upper bound to KV,1:

KV,1 =
4πm1

R3
1

∫ ∞
0

M(r)α(r/R1)rdr <
4πm1

R3
1

Mtot

∫ ∞
0

α(r/R1)rdr

<
4πm1

R1

Mtotf(∞)

(2.111)
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On the other hand, we can find a lower bound to KV,2:

KV,2 =
4πm2

R3
2

∫ ∞
0

[M1(r) +M2(r)]α(r/R2)rdr

>
4πm2

R3
2

∫ ∞
0

M2(r)α(r/R2)rdr =
4πm2

R3
2

∫ ∞
0

(∫ r

0

4πr′2ρ2(r′)dr′
)
α(r/R2)rdr

=
4πm2

R6
2

M2

∫ ∞
0

(∫ r

0

4πr′2α(r′/R2)dr′
)
α(r/R2)rdr =

=
4πm2

R2

M2

∫ ∞
0

(∫ x

0

4πx′2α(x′)dx′
)
α(x)xdx.

(2.112)

In condition of global energy equipartition (KV,1 = KV,2) we can combine Eq. (2.112)

and Eq. (2.111) to obtain:
R2

R1

> β1
m2

m1

M2

Mtot

, (2.113)

where we have defined β1 as:

β1 =

∫∞
0

(∫ x
0

4πx′2α(x′)dx′
)
α(x)xdx

f(∞)
. (2.114)

Combining Eq. (2.113) with Eq. (2.110) we obtain:

1 > β1

(
m2

m1

)3/2
M2

Mtot

, (2.115)

which is analogous to the result found by Vishniac (Eq. (2.96)). If M1 �M2, then

Mtot ≈M1 and Eq. (2.115) gives the result found by Spitzer (Eq. (2.78)).

Homology of density profiles

A key hypothesis in Vishniac derivation is that the form factor α(x) does not

depend on mass. This hypothesis implies that density profiles of two generic compo-

nents are homologous, that is we can obtain the density profile of each component

by rescaling and normalizing the density profile of the other component. Merritt

(1981) [39] suggested that this condition cannot be considered realistic for real sys-

tems, making Vishniac result not clearly justified. We thus wonder if there exists a

physically-based distribution function which implies homologous density profiles.

We first observe that the gravitational potential Φ(r) is an increasing monotonic

function of the radial coordinate r, which implies a one-to-one relationship between

Φ and r. We can thus use Φ as a radial coordinate. Homology condition on density

profile can be rewritten as:

ρm(Φ) = H(m) Θ[Φ/Φm], (2.116)

67



2.4. THE VISHNIAC CRITERION

with Θ(x) equal for all the masses. The fact that more massive stars are more

concentrated can be expressed as:

dΦm

dm
< 0. (2.117)

We now define fmdm as the distribution function (normalized to mass density) for

stars in the mass range (m,m+dm). We first consider isotropic systems; in this case

it is possible to apply Abel inversion to obtain the distribution function in terms of

mass density:

fm(E) =
1

2π2
√

2

[∫ 0

E

d2ρm
dΦ2

dΦ√
Φ− E

− 1√
−E

(
dρm
dΦ

)
Φ=0

]
. (2.118)

We can substitute Eq.[2.116] inside Eq.[2.118] to obtain:

fm(E) =
H(m)

2π2
√

2Φ
3/2
m

[∫ 0

E/Φm

d2Θ

dx2

dx√
x− E/Φm

− 1√
−E/Φm

(
dΘ

dx

)
x=0

]
= F (m)ζ(E/Φm).

(2.119)

The form obtained for the distribution function is coherent with that of multi-

components King models (Eq.[2.30]) (note that in that case every component was

labeled by a discrete index i whereas in this case we use a continuous index m).

In effect, if we generalize profiles described in Sect. 2.2.1 to a continuous index m,

density profile for every component of mass m is:

ρm(ψ) =
Ãm

a
3/2
m

exp

(
am
a1

ψ

)
γ

(
5

2
,
am
a1

ψ

)
, (2.120)

which can be written as:

ρm(ψ) = H(m)Θ(ψ/ψm), (2.121)

By comparison with Eq.[2.120] we have:

H(m) =
Ãm

a
3/2
m

, (2.122)

Θ(ψ/ψm) = exp

(
am
a1

ψ

)
γ

(
5

2
,
am
a1

ψ

)
, (2.123)

with ψm = a1/am. The fact that more massive stars are more concentrated to the

center can be expressed as:
dψm
dm

< 0, (2.124)

as, for smaller values of ψm, values of central densities (Eq.[2.120] for ψ = Ψ) raise.

Homology condition requires that Θ(x) is the same for all masses. For King models

homology condition is satisfied if we express density profiles as functions of ψ.
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I studied if the condition expressed in Eq. (2.124) is verified in King models.

I considered two-component King models and studied the variation of ψ2 = a1/a2

as a function of the mass of the second component by solving Eq. (2.35) in case

of central energy equipartition (η = 0.5) with different values of m2/m1 from 1

to 10. The result is represented in Fig. 2.9. We note that a1/a2 is a monotonic

decreasing function of m2/m1. The assumption that the heavy component is more

concentrated, as expressed by Eq. (2.124), is thus fulfilled.

2 4 6 8 10

0.4

0.6

0.8

1.0

m2/m1

a
1
/a
2

King Models, a1/a2 - η=0.5

Figure 2.9: The ratio a1/a2 for different values of mass ratio m2/m1. We note that

a1/a2 is a decreasing function of mass. The assumption that the heavy component

is more concentrated, as expressed by Eq. (2.124), is thus fulfilled.

I also studied if the two-component models that we will use in the study of real-

istic simulations in Sect. 3.3.2 fulfill the homology condition assumed by Vishniac.

Let ρ1(r) and ρ2(r) be given functions, for example those produced by the construc-

tion of the two-component self-consistent King or f
(ν)
T models. Vishniac’s ansatz,

for the two component case, leads to:

ρ1(r) =
M1

R3
1

α(r/R1), (2.125)

and

ρ2(r) =
M2

R3
2

α(λr/R2), (2.126)

where we set λ ≡ R1/R2 > 0. In other words, there should exist a suitable charac-

teristic scale R2, i.e. a suitable λ, such tht for all the values of r:

ρ2(r) =

(
M2

m1

)
λ3ρ1(λr). (2.127)
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We can argue that two-component King or anisotropic models violate this conjecture,

so that the positive-definite integral:

D0(λ) =

∫ ∞
0

[
ρ2(r)− M2

M1

λ3ρ1(λr)

]2

dr (2.128)

is expected not to vanish (for any λ > 0).

Other definition of “violation” may also be be acceptable. For example, if we

wish to emphasize the role of the 3-dimensional distribution, we might refer to:

D1(λ) =

∫ ∞
0

[
ρ2(r)− M2

M1

λ3ρ1(λr)

]2

4πr2dr. (2.129)

Vishniac’s ansatz is supplemented by a requirement on R′(m). Thus, if D0(λ) hap-

pened to be reasonably small for some λ, we expect that, if m1 < m2, the optimal

λ is larger than unity.

I considered two-component King models under the assumption of central energy

equipartition (Eq. (2.35) with η = 0.5) and with m2/m1 = 2 and M1/M2 = 2. I

solved the self-consistent problem by setting Ψ = 5 and obtained the density profiles

of the two components. I then evaluated D0 and D1 by applying Eq. (2.128)

and Eq. (2.129). The integral D0(λ) presents a minimum in λmin,0 = 2.08, with

D0(λmin,0) = 101. The integral D1(λ) presents a minimum in λmin,1 = 1.98, with

D1(λmin,1) = 36. The profiles of the second component and of the first component

normalized and rescaled by λmin,0 (left panel) and λmin,1 (right panel) are plotted in

Fig. 2.10. As illustrated, the density profiles of the King models have approximately

similar shapes only up to the half-mass radius and thus they cannot be considered

homologous. Thus King models profiles, if expressed as functions of the radial

coordinate, do not fulfill the condition of homology.

I repeated the same procedure by considering the two-component f
(ν)
T models

introduced in Sect. 2.2.2, under the assumption of central energy equipartition (Eq.

(2.43). I solved the self-consistent problem by setting Ψ = 5 and γ = 40 and

obtained the density profiles of the two components. I then evaluated D0 and D1,

obtaining, from the first calculation, λmin,0 = 3.10 and D0(λmin,0) = 6.65× 104 and

from the second calculation λmin,1 = 3.59 and D1(λmin,1) = 867. The profiles of the

second component and of the first component normalized and rescaled by λmin,0 (left

panel) and λmin,1 (right panel) are plotted in Fig. 2.11. Also for the f
(ν)
T models,

the values of D0 and D1 do not vanish for some λ. The homology condition is not

fulfilled. In this case, as illustrated in Fig. 2.11, the differences between the two

profiles are even more evident, with very large discrepancies outside the half-mass

radius.
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Figure 2.10: The King models density profiles of the second component (yellow line)

and of the first component (blue line) normalized and rescaled by λmin,0 (left panel)

and λmin,1 (right panel).
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Figure 2.11: The f
(ν)
T models density profiles of the second component (yellow line)

and of the first component (blue line) normalized and rescaled by λmin,0 (left panel)

and λmin,1 (right panel).
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Chapter 3

Energy equipartition and mass

segregation in Monte Carlo

simulations

Several different techniques have been developed for computing cluster evolution

in phase space. To model the evolution of real stellar systems and make meaningful

comparisons with observations, one has to take into account the complex interaction

between stellar evolution, stellar dynamics and the environment. A possible method

to deal with the dynamics of the stars consists in the direct integration of the dy-

namical equations for N mass points. This way of proceeding, sometimes referred

to as N-body calculation, can be applied to almost any situation, including transient

perturbations by external masses with no simple symmetry. An important applica-

tion of such technique is to the dynamics of collapsing cores (e.g., see Bianchini et al.

(2017) [13]), when the formation of binary stars by three-body encounters becomes

important. The great disadvantage of this technique is the generally prohibitive

amount of cpu time (∼ N2) required if N becomes large.

For globular clusters, aside from some complex situations (e.g., those that may

develop after core collapse), phase space diffusion produced by distant two-body

encounters plays the dominant role in their evolution. In this case one may consider

a kind of codes, the so-called Monte Carlo codes, that are faster with respect to

N-body codes but properly incorporate the standard relaxation processes. At the

same time, because they are much “lighter” than direct N-body codes, Monte Carlo

codes offer a way to introduce more degrees of freedom as, for example, the physical

processes that are important during stellar evolution. Monte Carlo methods were

developed by Hénon (1971) [31] and Spitzer (1975) [49] and substantially improved

by Stodó lkiewicz (1986) [53] and Giersz (1998) [22] (see also [23], [25], [32]).
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3.1. SIMULATIONS

In this thesis I consider a set of Monte Carlo cluster simulations, developed and

performed by Downing et al. (2010) [19] and used by Bianchini et al. (2016) [12]

and Bianchini et al. (2017) [10] in their study of energy equipartition and mass

segregation. These authors focused on projected quantities to make useful com-

parisons with observations. In this thesis I consider intrinsic quantities for a more

direct comparison with models. Simulation data (i.e., the output of simulations)

were kindly shared by P. Bianchini. The simulations include a Kroupa (2001) ini-

tial mass function1 with different amounts of primordial binaries. By means of a

relatively high number of particles they include the main characteristics of stellar

evolution and provide a realistic description of the long-term evolution of globular

clusters with a single stellar population. The initial and final properties of these

systems are described in detail in Sect. 3.1.

3.1 Simulations

Initial conditions of simulations under consideration are described by Downing

et al. (2010) [19] and Bianchini et al. (2016) [12]. All the simulations have their

initial mass and velocity distributions drawn from a Plummer (1911) [46] isotropic

model (see Sect. 2.1.1), to which a cutoff was performed at 150 pc. Details of the

initial conditions of the simulations are summarized in Tab. 3.1. Simulations from

Table 3.1: Initial state of simulations. Table from Bianchini et al. (2016) [12].

fbinary [%] rt/rh N Mtot [M�]

Sim 1 (10low75) 10 75 5× 105 3.62× 105

Sim 2 (50low75) 50 75 5× 105 5.07× 105

Sim 3 (10low37) 10 37 5× 105 3.62× 105

Sim 4 (50low37) 50 37 5× 105 5.07× 105

Sim 5 (10low180) 10 180 5× 105 3.62× 105

Sim 6 (50low180) 50 180 5× 105 5.07× 105

Sim 7 (10low75-2M) 10 75 20× 105 7.26× 105

Sim 1 to Sim 6 contain an initial number of 5 × 105 stars, with different binary

fractions (10% or 50%) and concentration values, quantified by the ratio of the

1Thr Kroupa (2001) mass function has the form of a composite power law:

dN/dm ∝ m−α,

with α = 0.3 for m < 0.08M�, α = 1.3 for 0.08M� < m < 0.5M�, and α = 2.3 for m > 0.5M�.
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intrinsic truncation radius and the intrinsic half-mass radius rt/rh amounting to

75, 37 or 180. Sim 7 initially contains 2 × 106 particles, with a binary fraction of

10%. Note that for a galactic mass MG ≈ 1011M� and cluster masses of the order of

5×105M� (as indicated in Tab. 3.1) distances of clusters from the center of galaxies

(which could be estimated in first approximation by means of Eq. (1.24)) are of the

order of 12 − 13 kpc. This condition makes simulations relatively isolated, so that

the observed effects are due mainly to internal cluster dynamics. The tidal cutoff

is not held constant during the evolution of the cluster but is re-calculated at each

time-step according to the current cluster mass, which can vary as consequence of

dynamical evaporation (see Sect. 1.3.1) and stellar evolution (e.g. during supernova

explosions the emitted gas is removed from the system)

Systems were made evolved for 11 Gyr and their properties were studied at

three snapshots from the initial time, at 4, 7, 11 Gyr. Table 3.2 reports projected

properties of simulations at the three snapshots considered: the concentration c,

defined as c = log(Rt/Rc), with Rt the projected truncation radius and Rc the

projected core radius; the projected effective radius Re; the logarithm of the half-

mass relaxation time trh (evaluated by means of Eq. (1.20)) and the logarithm of

the core relaxation time trc (evaluated by means of Eq. (1.19)).

Table 3.2: Projected properties of the simulation states. Table from Bianchini et al.

(2017) [10].
c Re [pc] Rc [pc] log trh log trc

4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr 4 Gyr 7 Gyr 11 Gyr

Sim 1 1.52 1.46 1.45 4.01 4.23 4.92 2.74 3.12 3.15 9.38 9.49 9.54 9.15 9.17 9.12

Sim 2 1.42 1.38 1.34 4.89 5.92 6.06 3.42 3.62 3.89 9.47 9.58 9.66 9.35 9.29 9.29

Sim 3 1.26 1.21 1.16 7.04 8.16 9.05 4.92 5.52 6.07 9.66 9.76 9.82 9.65 9.66 9.65

Sim 4 1.21 1.16 1.12 8.84 8.96 10.92 5.54 6.11 6.47 9.71 9.80 9.88 9.76 9.78 9.74

Sim 5 1.81 1.95 2.06 1.53 1.90 2.69 1.33 0.96 0.75 9.17 9.26 9.35 8.44 8.03 7.74

Sim 6 1.73 1.74 1.79 2.96 3.10 3.05 1.64 1.56 1.34 9.25 9.35 9.42 8.60 8.47 8.26

Sim 7 1.52 1.52 1.51 2.57 2.62 2.90 1.73 1.87 1.85 9.42 9.50 9.57 9.04 9.04 8.99

Energy equipartition and mass segregation have been studied in these systems

by Bianchini et al. (2016) [12] and Bianchini et al. (2017) [10] and their main results

were described in Sect. 1.3.3 and Sect. 1.3.4 respectively. For my study of energy

equipartition and mass segregation, I initially considered eight snapshots. As I want

to study relaxation effects, I focused on all the snapshots of more relaxed simulations

(Sim 5 and Sim 6 at 4 Gyr, 7 Gyr and 11 Gyr) and on two other snapshots at 11

Gyr, that is Sim 1 at 11 Gyr and Sim 3 at 11 Gyr. At my disposal I have complete

information about mass, luminosity (in the V-band), type (the evolutionary phase),

position and velocity of single stars. In case of a binary system, I have information

about mass, luminosity (in the V-band), type of the two components and about
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position and velocity of the center of mass. I always consider the reference system

of the center of mass of the cluster. All the simulations show typical values for

the velocity of the center of mass of the order of vcm ∼ 10−2 − 10−3 km/s. Table

3.3 reports binary fraction, the intrinsic ratio rt/rh, total number, total mass and

relaxation parameter, defined as nrel = tage/trc, for each simulation considered. All

Table 3.3: Properties of the simulation states.

fbinary [%] rt/rh N Mtot [M�] nrel

Sim 1, 11 Gyr 2.95 11.27 4.69× 105 1.73× 105 8.3

Sim 3, 11 Gyr 5.60 6.90 4.52× 105 1.73× 105 2.5

Sim 5, 4 Gyr 3.66 13.95 4.46× 105 1.75× 105 14.6

Sim 6, 4 Gyr 12.24 11.95 5.36× 105 2.35× 105 10.1

Sim 5, 7 Gyr 3.54 18.21 4.32× 105 1.65× 105 64.9

Sim 6, 7 Gyr 11.83 15.33 5.20× 105 2.20× 105 23.6

Sim 5, 11 Gyr 3.44 16.13 4.11× 105 1.54× 105 200.2

Sim 6, 11 Gyr 11.49 13.78 5.00× 105 2.07× 105 60.1

the snapshots relative to Sim 6 present a higher number of stars (column 4) with

respect to the initial state as a consequence of the high initial number of binaries.

Binary systems are destroyed by encounters, producing single stars and increasing

the number of stars in the simulations. Most of the mass is lost because of dynamical

evaporation. A fraction of the total mass is also lost because of stellar evolution,

but this contribution is important only in the first few million years, when a high

number of massive stars is present.

I initially identified four main groups of stars: main sequence single stars; giant

single stars, which include stars labeled as Hertzsprung gap, giant branch, core

helium, first AGB, second AGB, helium main sequence, helium Hertzsprung gap and

helium giant branch; single remnants, which include carbon-oxygen white dwarfs,

oxygen-neon white dwarfs, neutron stars and black holes; binaries. Table 3.4 reports

the number and relative contribution to the total number, mass and luminosity

of stars of each type. Main sequence stars (MS) dominate the number and mass

percentage and constitute a good part of the luminosity of the system (about 25−
30%). Giants represent a negligible part of the mass of the clusters but, despite

their very small number, dominate the luminosity of the system. Remnants are a

relevant part of the mass of the system (between 15 − 25%) but do not contribute

to luminosity. Finally, binary mass is important particularly in Sim 6, which has

been initialized with a high binary fraction (50%).

Figure 3.1 illustrates the mass spectra for four simulations. All the spectra
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Table 3.4: Number, mass and luminosity percentage of each class of stars.
Number percentage [%] Mass percentage [%] Luminosity percentage [%]

MS Giants Remnants Binaries MS Giants Remnants Binaries MS Giants Remnants Binaries

Sim 1, 11 Gyr 84.92 0.33 11.80 2.95 69.61 0.77 23.55 6.07 31.28 62.19 0.006 6.53

Sim 3, 11 Gyr 82.08 0.31 12.01 5.60 64.05 0.67 23.40 11.89 31.97 63.61 0.004 4.41

Sim 5, 4 Gyr 87.67 0.40 8.27 3.66 74.60 1.14 17.09 7.16 26.77 69.24 0.003 3.99

Sim 6, 4 Gyr 78.76 0.36 8.63 12.24 61.03 0.93 16.24 21.80 24.90 62.23 0.006 12.86

Sim 5, 7 Gyr 85.25 0.39 10.82 3.54 70.81 0.96 21.50 6.74 24.20 72.55 0.005 3.24

Sim 6, 7 Gyr 76.70 0.35 11.12 11.83 58.41 0.78 20.27 20.54 24.46 61.20 0.004 14.34

Sim 5, 11 Gyr 82.85 0.36 13.35 3.44 67.16 0.79 25.71 6.34 27.48 69.14 0.004 3.38

Sim 6, 11 Gyr 74.60 0.32 13.59 11.49 55.69 0.65 24.16 19.51 25.61 61.64 0.007 12.74

present a general decreasing behavior with a secondary peak at about 0.6M�. The

presence of the secondary peak is due to the formation of a large number of white

dwarfs as a consequence of stellar evolution.

3.1.1 Hydrostatic and virial equilibrium

Before addressing the objectives of this thesis, I checked if simulations in the

sample considered fulfill the conditions of hydrostatic and virial equilibrium (see

Sect. 2.2.4). I first verified the virial equilibrium condition by calculating the pa-

rameter κ defined in Eq. (2.62). If the models captured by the snapshots are in

approximate equilibrium condition, this parameter should be very close to unity (as

explained in Sect. 2.2.4). I first evaluated the total kinetic energy as the sum of all

the kinetic energies of stars, Ki:

K =
N∑
i

Ki =
1

2
miv

2
i , (3.1)

where mi is the star (or binary) mass and vi is the velocity. A direct evaluation of

the total gravitational energy would require too much time as the time to evaluate

all the distances between two stars ∼ N2. Thus, I evaluated the total gravitational

energy as:

W = −4πG

∫ rt

0

Mtot(r)ρtot(r)rdr. (3.2)

I constructed the total density profile ρtot(r) for each simulation (for a detailed de-

scription of this procedure see Sect. 3.3.1) and evaluated Mtot(r), the mass contained

inside a certain radius r. Values of κ−1, reported in Tab. 3.5, are all of the order of

10−4. Thus the virial equilibrium condition is found to be satisfied in all the models

considered.

In order to check the establishment of hydrostatic equilibrium, I defined a hydro-

static coefficient in analogy to the virial coefficient. The hydrostatic coefficient can
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Figure 3.1: Mass spectra of four simulations: Sim 1 at 11 Gyr (left upper panel),

Sim 3 at 11 Gyr (right upper panel), Sim 5 at 7 Gyr (left lower panel), Sim 6 at 7

Gyr (right lower panel). There is a secondary peak at about 0.6M�, which is the

typical mass at which white dwarfs form.

Table 3.5: Virial coefficients
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 4 Gyr Sim 5, 7 Gyr Sim 5, 11 Gyr Sim 6, 4 Gyr Sim 6, 7 Gyr Sim 6, 11 Gyr

κ− 1 4.50× 10−4 −2.59× 10−4 2.18× 10−4 3.66× 10−4 1.37× 10−4 1.31× 10−4 1.57× 10−4 2.51× 10−4

be defined as the ratio between the moduli of the left-hand-side and the right-hand-

side of hydrostatic equilibrium condition (Eq. (2.52)). Because for a multi-mass sys-

tem hydrostatic condition must be fulfilled by each mass component (analogously,

it must be fulfilled by any fi in multi-components models, as seen in Sect. 2.2.4), I

defined the hydrostatic coefficient for stars of mass m as:

Hm(r) =

∣∣(d/dr) [ρm(r)σ2
r,m(r)

]
+ ρm(r)αm(r)σ2

r,m(r)/r
∣∣

GMtot(r)ρm(r)/r2
, (3.3)

where ρm, σ2
r,m and αm are the density, the radial velocity dispersion and the

anisotropy of stars with mass m. In case of hydrostatic equilibrium, Hm(r) is ex-

pected to be very close to unity for every value of r and for every mass m.

To check the establishment of hydrostatic equilibrium, I divided the system in

narrow mass bins of width 0.05M� centered in 0.12M�, 0.22M�, 0.57M� and

0.62M�. I evaluated Hm(r) for every mass bin at different radii. The values of
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Hm(r) − 1 for the four mass bins are represented in Fig. 3.2 and Fig. 3.3.
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Figure 3.2: Values of Hm(r)− 1 as a function of radius for four simulations: Sim 1

at 11 Gyr (left upper panel), Sim 3 at 11 Gyr (right upper panel), Sim 5 at 4 Gyr

(left lower panel), Sim 6 at 4 Gyr (right lower panel). The radial coordinate was

rescaled, for each mass bin, to the half-mass radius of the stars in that bin, rh,m.

For all the systems represented, hydrostatic equilibrium condition is fulfilled.

Hydrostatic equilibrium condition is fulfilled by all the snapshots except two, Sim

5 at 11 Gyr and Sim 6 at 11 Gyr, which exhibit an anomalous decreasing behavior,

with values of Hm(r) lower than the expected Hm(r) = 1. These systems cannot be

considered in hydrostatic equilibrium.

I tried to analyze the possible causes of this anomaly. I first constructed his-

tograms for the radial velocity distributions of the anomalous simulations and com-

pared them to those of their previous snapshots, as shown in Fig. 3.4. In the

anomalous systems, almost all (except for few hundreds) stars have positive ra-

dial velocities, as opposed to the others, consistent with hydrostatic equilibrium,

for which radial velocity distribution has approximately vanishing mean value. I

considered two possible reasons that might explain positive radial velocities.

First, this could be simply a problem in the generated output. This would explain
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Figure 3.3: Values of Hm(r) − 1 as a function of radius for four simulations: Sim

5 at 7 Gyr (left upper panel), Sim 6 at 7 Gyr (right upper panel), Sim 5 at 11

Gyr (left lower panel), Sim 6 at 11 Gyr (right lower panel). The radial coordinate

was rescaled, for each mass bin, to the half-mass radius of stars in that bin, rh,m.

Systems in the upper panels fulfill the condition of hydrostatic equilibrium whereas

those in the lower panels exhibit a monotonically decrease, with values always lower

than the equilibrium value. For these systems hydrostatic equilibrium condition is

not fulfilled.

why these systems turn out to be in virial equilibrium, as the virial test considers

only the moduli of velocities. To verify this possibility, I repeated the hydrostatic

equilibrium test by assuming that the output consists of the moduli of the radial

velocities and that the mean radial velocity of the system is actually zero. I then

defined another coefficient, H ′m(r) as:

H ′m(r) =

∣∣(d/dr) (ρm〈vr,mvr,m〉) + ρm(r)αm(r)σ2
r,m(r)/r + 2ρm〈vr,m〉〈vr,m〉/r

∣∣
GMtot(r)ρm(r)/r2

,

(3.4)

with 〈vr,mvr,m〉 = σ2
r,m + 〈vr,m〉〈vr,m〉. Under the assumption of an output error,

the square radial velocity dispersion σ2
r,m would be given by the second moment of
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Figure 3.4: Normalized radial velocity distributions, P (vr). We can observe that

two simulations which do not fulfill hydrostatic equilibrium, that is Sim 5 at 11 Gyr

(left upper panel) and Sim 6 at 11 Gyr (right upper panel) have almost all positive

radial velocities, as opposed to Sim 5 at 7 Gyr (left lower panel) and Sim 6 at 7 Gyr

(right lower panel) in which mean radial velocity is very close to zero.

velocities 〈vr,mvr,m〉, with 〈vr,m〉 close to zero. I repeated the same procedure as

described above for the study of hydrostatic equilibrium and found that, for the two

simulations considered, the value of H ′m(r) − 1 remains close to 0 throughout the

systems considered, as can be seen in Fig. 3.5. However, if there was an output

error of this kind, we would expect that all the velocities were positive; anomalous

simulations, instead, contain some hundred of stars with negative radial velocities.

The fact that H ′m(r) is very close to unity throughout the anomalous system can

also be explained as due to a radial expansion. In fact, H ′m(r) is the ratio between the

moduli of the left-hand-side and the right-hand-side of the momentum equations in

radial coordinates (Eq. (2.51)) without the assumption of zero mean radial velocity.

On the other hand, the anomalous models are the most relaxed states (see Tab.

3.3) and therefore they may have undergone a core collapse according to the process

described in Sect. 1.3.2. These simulations may thus be in a post-collapse expansion

phase. Thus, a radial expansion due to gravothermal catastrophe is another possible

explanation for the velocity distributions sin Sim 5 at 11 Gyr and Sim 6 at 11 Gyr.
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Figure 3.5: Values of H ′m(r) − 1 as a function of radius for Sim 5 at 11 Gyr (left

panel) and Sim 6 at 11 Gyr (right panel). A condition of stationarity is recovered.

However, as explained in Sect. 1.3.2, in this case the expansion would affect only

the stars in the core and, even if the all system would be expanding, it is difficult

to explain why the virial coefficient is so close to unity.

As this test on hydrostatic equilibrium cannot clarify the cause of the anomalous

velocity distribution found in Sim 5 at 11 Gyr and Sim 6 at 11 Gyr, I simply decided

to rule Sim 5 at 11 Gyr and Sim 6 at 11 Gyr out of the sample.

3.2 Energy equipartition and mass segregation

3.2.1 Energy equipartition

Equipartition in the simulations under consideration was studied by Bianchini et

al. (2016) [12]. In particular, this article pointed out that such systems reach a state

of only partial energy equipartition, which is quantified by means of the parameter

meq (see Sect. 1.3.3). In their study of equipartition, Bianchini et al. (2016)

considered all the stars inside the effective radius Re, thus referring to the concept

of global equipartition. As already anticipated in Sect. 1.3.3, real systems cannot

fulfill a condition of global energy equipartition because this would be possible only

in presence of global thermodynamical equilibrium. In principle, a condition close

to energy equipartition could be reached only in the central regions, where systems

are more relaxed.

I tried to check if, by restricting the study of energy equipartition to more central

regions, a state close to energy equipartition is indeed approached. In my study,

energy equipartition is characterized by means of the quantity mΣ2(r,m), where

Σ2(r,m) is defined as the statistical variance of velocities calculated on all the stars
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of mass m inside a sphere of radius r; in the case of energy equipartition this

parameter would be expected to be constant for different values of mass. I divided

the system in narrow mass bins of width 5.6 × 10−2M� centered from 0.11M�

to 0.9M� and assigned a representative value of mass to each bin by taking the

mean mass. I then evaluated mΣ2(r,m) by considering all the stars of each mass

bin inside 0.2rh,m, 0.5rh,m, rh,m and 2rh,m, where rh,m is the half-mass radius of

the stars belonging to the mass bin centered in m. I then divided mΣ2(r,m) by

m0Σ2(r,m0), where is the central mass of the first bin, m0 = 0.11M�. As illustrated

in Fig. 3.6, the ratio m̃Σ̃2(r,m) = mΣ2(r,m)/(m0Σ2(r,m0)) shows an increasing

trend as we move to higher masses, confirming that systems are not in a state of

full energy equipartition. In the central regions the slope of the curve is smaller

than that at higher radii, suggesting that the system is closer to a state of energy

equipartition. We also note that more relaxed and less relaxed systems, as indicated

by the parameter nrel (see Tab. 3.3), have a similar behavior, also in central regions;

this suggests that a condition of only partial energy equipartition can be fulfilled,

even in more relaxed systems.

As the systems under consideration are not in a state of energy equipartition,

the Vishniac condition (expressed by Eq. (2.96)) is expected to fail. In order to

test Vishniac result, I evaluated the quantities m̃ and M̃ , as defined in Sect. 2.4,

for different values of m. I determined β by means of its definition in Eq. (2.95)

(with density profiles constructed as explained in Sect. 3.3.1). I obtained typical

values of β ≈ 0.4, in good agreement with his assumption of β ≈ 0.5. If Vishniac

criterion is fulfilled, the quantity βm̃3/2M̃ should be smaller than unity. In Fig.

3.7, I plot βm̃3/2M̃ as a function of mass: this quantity has values > 1 in almost

all the mass spectrum and falls below unity only for very low values of all the

simulated systems. The fact that βm̃3/2M̃ < 1 at low masses is due to the fact that

βm̃3/2M̃ ≈ β < 1 near m1, but very few stars fall in this range of mass. The shape

of the profiles in Fig. 3.7 suggests a progressive approach to equipartition (condition

of βm̃3/2M̃ < 1) by heavy stars, in agreement with what found by Bianchini et al.

(2016) [12]. However, even for Sim 5 at 7 Gyr, the percentage of mass of stars

which fulfill Vishniac criterion is smaller than 1%. We can conclude that Vishniac

criterion is not fulfilled by all the systems that we have considered. In addition,

density profiles of systems under consideration are well described by f
(ν)
T models (as

we will see in Sect. 3.3.2), which do not fulfill the homology condition required to

derive Vishniac criterion. This undermines the application of this criterion to these

systems, the hypotheses which it is based on cannot be considered fully realistic.
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Figure 3.6: Values of m̃Σ̃2(r,m) = mΣ2(r,m)/(m0Σ2(r,m0)) for four simulated

states: Sim 1 at 11 Gyr (left upper panel), Sim 5 at 4 Gyr (right upper panel), Sim

6 at 7 Gyr (left lower panel), Sim 5 at 7 Gyr (right lower panel). This quantity

has been evaluated inside four different radii, 0.2rh,m (red line), 0.5rh,m (green line),

rh,m (orange line) and 2rh,m (blue line). Note that m̃Σ̃2(r,m) is not constant even

for most relaxed systems (lower panels) and even in central regions.

3.2.2 Mass segregation

I divided the system into radial shells and, for each shell, I calculated the mean

mass, m(r). I repeated the same procedure considering the four classes of stars

defined in Sect. 3.1 separately. In Fig. 3.8 and Fig. 3.9 the mean mass is shown

to have a monotonic decline in all the simulations under consideration, even for

the least relaxed system, Sim 3 at 11 Gyr. In addition, all the classes of stars

defined in Sect. 3.1 present mass segregation separately, with the exception of giant

stars. These are not affected by mass segregation as the giant phase in a star life

is very short and thus, at each snapshot, only a group of stars in a restricted range

of mass is in this evolution stage. The fact that main sequence stars exhibit mass

segregation can have important implications for the comparison between models and

observations, as we will see in Sect. 3.4.

Mass segregation can also be described considering the variation of the half-mass
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Figure 3.7: The Vishniac criterion tested in four simulated states: Sim 3 at 11 Gyr

(left upper panel), Sim 1 at 11 Gyr (right upper panel), Sim 6 at 7 Gyr (left lower

panel), Sim 5 at 7 Gyr (right lower panel).

radius for stars of a certain mass, rh,m, as a function of mass (see also Fig. 9 in de

Vita et al. (2016) [16] and related discussion). For a mass-segregated system, we

expect a decreasing trend with mass. In Fig 3.10 this trend can be observed, also

for less relaxed systems. We can also observe that the gradient is small in all the

half-mass radius profiles at about 0.6M�. As noted above, in Sect. 3.1, this is the

typical mass at which white dwarfs form, in many cases after undergoing a severe

mass loss. If, after loosing a great quantity of mass, white dwarfs do not have time

to relax dynamically, they will be characterized by the same mass distribution as

objects with their original mass and, as a consequence, they will exhibit a lower

half-mass radius. We can conclude that mass segregation affects all the systems

considered, even those with very small nrel.
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Figure 3.8: Mean mass profiles for the most relaxed simulation state of our sample,

Sim 5 at 7 Gyr. The left upper panel shows the variation of the mean mass consid-

ering all the classes of stars. The right upper panel shows the main sequence stars

mean mass profile. The left lower panel shows giant mean mass profile. The line

is jagged because of the very small number of stars in the giant phase. The right

lower panel shows remnant mean mass profile. Red lines represent the mean mass

of the component, evaluated considering all the stars of the simulated system.

3.3 Fitting the simulated states with self-consistent

dynamical models

I performed a fit to the simulated states by means of King models, isotropic

models traditionally applied to the study of globular clusters (see Sect. 2.1.3), and

anisotropic f
(ν)
T models, which have been constructed to describe partial relaxed

systems formed by violent relaxation (see Sect. 2.1.4). The model that best fits

the simulated systems is determined by means of a chi-square test on density and

velocity dispersion profiles. For the method used to perform the chi-square test I

refer to Zocchi et al. (2012) [62].
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Figure 3.9: Mean mass profiles for the least relaxed simulation state of our sample,

Sim 3 at 11 Gyr. See caption of Fig. 3.8. In this case the mean mass profile of

remnants (right lower panel) is replaced by the mean mass profile of binaries.

3.3.1 Fit by one-component models

Construction of profiles

Best-fit one-component models are those that best represent the total density and

velocity dispersion profiles. These profiles are constructed by dividing the systems

into radial shells such that the number of stars in the various shells is constant,

with at least 3000 stars. The number of shells Nshells in which the system is divided

for the construction of the profiles and the number of stars in each shell Nstars

are reported in Tab 3.6. Density profiles are constructed by dividing the mass in

Table 3.6: Shell construction for one-component models.
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 7 Gyr Sim 6, 7 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr

Nshells 152 145 140 168 145 175

Nstars 3083 3118 3087 3098 3085 3061

stars contained in each shell by the volume of the shell, Vshell = (4π/3)(r3
sup,shell −

r3
inf,shell), where rsup,shell and rinf,shell are the upper and the lower radii of the shell.

The radial distance associated with the i-th shell ri is the mean distance of stars
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Figure 3.10: The variation of the half-mass radius with mass. All the simulations

show a decreasing trend with mass, with no substantial differences between less

relaxed systems (Sim 3 at 11 Gyr, left upper panel) and more relaxed systems (Sim

5 at 7 Gyr, right lower panel). This means that mass segregation sets in efficiently

after very few relaxation times. The right upper panel represents Sim 1 at 11 Gyr

and the left lower panel represents Sim 6 at 7 Gyr.

belonging to the shell. Velocity dispersion profiles are constructed by evaluating

the square root of the total variance of the velocities of the stars in each shell. In

order to perform a chi-square analysis, it is necessary to associate an error to the

values of density and velocity dispersion in each shell. In my profiles, radial errors

are simply the width of each shell (but they do not enter the chi-square analysis).

Density and velocity dispersion uncertainties, instead, are determined by means of

a bootstrap resampling, as described in Appendix A. In particular, the uncertainty

on the value of a quantity is determined as the bootstrap estimate of standard error

(Eq. [A.4]). Uncertainties obtained in this way are very small, typically of the order

of 1%. Once the best-fit models are found, they can be used to try to match other

quantities of these systems, such as the anisotropy profiles. The anisotropy profiles

of the simulated states are obtained by evaluating for each shell the value of local

anisotropy function α(r) (no uncertainty is associated in this case), as defined in Eq.

(1.16). In Fig. 3.11 an example of total density, velocity dispersion and anisotropy
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profiles, for Sim 1 at 11 Gyr, is shown. The anisotropy profile shows an increasing
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Figure 3.11: The density (left upper panel), velocity dispersion (right upper panel)

and anisotropy (lower panel) profiles for Sim 1 at 11 Gyr.

trend with radius, as a consequence of the development of the core-halo structure

described in Sect. 1.3.2 because the system was initialized by means of an isotropic

Plummer model. More relaxed systems show higher values of α in the outermost

regions, suggesting that the slow cumulative effects of relaxation processes drive

the system toward a velocity distribution similar to that generated by collisionless

violent relaxation, which is the physical basis under which f (ν) models were originally

constructed.

Fitting procedure

The best-fit model is obtained by means of a chi-square analysis by minimizing

the quantity χ2
tot = χ2

ρtot + χ2
σ2
tot

, with the density chi-square defined as

χ2
ρtot =

Nshells∑
i=1

[
ρtot(ri)− ρsρ̂(ri/λ)

δρi

]2

, (3.5)

where ρtot(ri) is the value of the total density of the i-th shell, δρi is the density

error associated with the i-th shell and ρ̂ is the dimensionless density of the model
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considered. In order to compare simulated states with models, it is necessary to

assign two scales, the density scale ρs and the length scale λ. The velocity dispersion

chi-square is defined as:

χ2
σtot =

Nshells∑
i=1

[
σtot(ri)− σsσ̂(ri/λ)

δσi

]2

, (3.6)

where σtot(ri) is the value of velocity dispersion in the i-th shell, δσi is the velocity

dispersion error associated with the i-th shell and σ̂ is the dimensionless velocity

dispersion of the model considered. Also in this case, to compare simulations with

models, it is necessary to determine two scales, the velocity dispersion scale σs and

the length scale λ. The goodness of the fit is determined by evaluating the reduced

χ2
tot:

χ̃2
tot =

χ2
tot

2Nshell − λfree
, (3.7)

where λfree is the total number of free parameters in our models. The denominator in

Eq. (3.7) represents the number of degrees of freedom Nfree in the model considered.

Similarly, we find χ̃2
ρtot and χ̃2

σtot by dividing each quantity by the corresponding

number of degrees of freedom.

I point out that this is meant to be a formal analysis which has the objective to

determine which model is able to give a better description of the simulated states

under consideration, and not to give an accurate determination of the relevant pa-

rameters of the models under consideration.

Setting the scales

In order to compare simulated systems to models we need to set the scales λ, ρs

and σs in Eq. (3.5) and Eq. (3.6). This can be done by setting two scales of the

problem. The length scale λ is determined by equating the half-mass radius of the

simulated states under consideration, rh,sim, to the half-mass ratio of the model λξh:

λ =
rh,sim
ξh

. (3.8)

The mass scale Ms can be easily set by equating the total mass of the simulated

state Msim to the mass of the model MsM̂ , where M̂ is the dimensionless mass of

the model, to find:

Ms =
Msim

M̂
. (3.9)

The relations which allow to determine ρs and σs depend on the model considered,

as will be seen below. Values of rh,sim and Msim for the sample of the simulated

states are recorded in Tab. 3.7.
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Table 3.7: Half-mass radii and total masses of the simulated states.
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 7 Gyr Sim 6, 7 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr

rh,sim [pc] 7.89 12.91 4.81 5.64 4.35 4.99

Msim [M�] 1.73× 105 1.73× 105 1.65× 105 2.20× 105 1.75× 105 2.35× 105

Residuals and error on the best-fit parameters

The i-th residual for the density profile is calculated as

∆ρ

ρ
(ri) =

ρtot(ri)− ρsρ̂(ri/λ)

ρtot(ri)
, (3.10)

and the i-th residual for the velocity dispersion profile is calculated as

∆σ

σ
(ri) =

σtot(ri)− σsσ̂(ri/λ)

σtot(ri)
. (3.11)

Formal errors on parameters are calculated from of the Hessian matrix:

Hij =
∂2χ2

tot

∂xi∂xj
, (3.12)

where xi are the free parameters of the fit. Then we calculate the covariance matrix:

[E] = 2[H]−1. (3.13)

Finally the error on parameter xi can be found as:

δxi = (Eii)
1/2. (3.14)

For example, in the case of the parameter Ψ for both King and fT (ν) models:

δΨ =

[
2

∂2χ2
tot/∂Ψ2

]2

. (3.15)

One-component King models

One-component King models have only one free parameter, Ψ (λfree = 1). In

this case, with notation introduced in Sect. 2.1.3, ρs = Ã/a3/2 and σs = a−1/2. The

length scale of the system, expressed as a function of a and Ã, is

λ =

√
a1/2

4πGÃ
, (3.16)

and the total mass is:

M =
Ã

a3/2
λ34π

∫ ξt

0

ρ̂(ψ)ξ2dξ =
Ã

a3/2
M̂, (3.17)
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where ρ̂(ψ) is defined in Eq. (2.17). Thus, for King models, Ms = Ãλ3/a3/2. These

relations allow to determine the values of a and Ã for given λ and Ms:

a =
λ

4πGMs

, (3.18)

Ã = [Ms(4πGλ)3]−1/2. (3.19)

By combining Eq. (3.18) and Eq. (3.19) with Eq. (3.8) and Eq. (3.9), we find the

values of a and Ã for a fit of a model to a simulation state and thus ρs and σs. Best-

fit values of Ψ for King models are reported in Tab. 3.8. The set of simulated states

Table 3.8: Best-fit results for one-component King models

Ψ χ̃2
ρtot χ̃2

σtot χ̃2
tot Nfree

Sim 3, 11 Gyr 5.850± 0.005 32.04 114.71 73.12 289

Sim 1, 11 Gyr 6.761± 0.005 81.80 242.02 161.38 303

Sim 6, 4 Gyr 7.151± 0.004 143.53 469.08 305.43 349

Sim 5, 4 Gyr 7.399± 0.005 143.38 496.77 318.96 289

Sim 6, 7 Gyr 7.507± 0.003 159.22 374.67 266.15 335

Sim 5, 7 Gyr 7.717± 0.006 127.29 502.052 313.54 279

has been listed from the least relaxed (Sim 3 at 11 Gyr) to the most relaxed (Sim

5 at 7 Gyr). We find a trend of increasing Ψ for more relaxed systems. The values

of χ̃2
tot are very high, in particular for the kinematic comparison; this is partly due

to the low values of the formal uncertainties, but suggests a bad agreement between

models and simulations. Apparently, King models appear to perform slightly better

for less relaxed cases. The best-fit density and velocity dispersion profiles for Sim

3 at 11 are plotted in Fig. 3.12. The density profile seem to be fitted reasonably

well, at variance with the kinematic profile. One-component King models cannot

reproduce the central peak of velocity dispersion. This is probably related to the

fact that King models have isotropic velocity distributions, whereas the simulated

states have significant pressure anisotropy.

In the same format, in Fig. 3.13, we show the best-fit profiles for Sim 6 at 7

Gyr. The relevant plots for the remaining cases are found in Appendix B.1.1. In

general, one-component King models are found to provide a poor representation

of the simulated states, because the models exhibit an exceedingly sharp density

truncation in the outer parts and an excessively high central density peak, and they

are unable to match the qualitative behavior of the velocity dispersion profile.
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Figure 3.12: Best-fit profiles and residuals for Sim 3 at 11 Gyr for one-component

King models. The upper panels shows the density profile (left) and the density

residuals (right). The lower panel illustrates the velocity dispersion profile (left)

and the velocity dispersion residuals (right).

One-component f
(ν)
T models

The f
(ν)
T models are characterized by two free parameters, Ψ and γ. The density

and velocity dispersion scales are, with notation introduced in Sect. 2.1.4, ρs =

A/a3/2 and σs = a−1/2. The length scale is:

λ =
1

da1/4
, (3.20)

whereas total mass is given by:

M =
A

a3/2
λ34π

∫ ξt

0

ρ̂(ξ, ψ)ξ2dξ =
A

a3/2
λ3M̂, (3.21)

where ρ̂(ξ, ψ) is defined in Eq. (2.24), so that Ms = Aλ3/a3/2. We can now deter-

mine, for a given γ, the values of a, d and A:

a =
λ

Ms4πGγ
, (3.22)

d =

[
Ms

λ5
(4πGγ)

]1/4

; (3.23)
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Figure 3.13: Best-fit profiles and residuals for Sim 6 at 7 Gyr for one-component

King models. The upper panels shows the density profile (left) and density residuals

(right). The lower panel illustrates the velocity dispersion profile (left) and velocity

dispersion residuals (right).

A = [Ms(4πGλγ)3]−1/2. (3.24)

By combining Eq. (3.22) and Eq. (3.24) with Eq. (3.8) and Eq. (3.9) we can find

the values of a and A for a fit of a model to the simulated state and thus ρs and σs.

Best-fit results for f
(ν)
T models are reported in Tab. 3.9. By comparing χ̃2

tot obtained

with these models with that in Tab. 3.8, we notice a significant improvement with

respect to King models. Also here there is a trend of higher Ψ for more relaxed

systems.

The best-fit result for Sim 1 at 11 Gyr is presented in Fig. 3.14. The f
(ν)
T density

profile is able to give a good representation of that of the simulated state, with

differences only in the central shell. As to the velocity dispersion profile, the model

cannot reproduce the central peak that characterizes the simulation but its shape

is in better agreement with respect to the best-fit King model. The best-fit profiles

for the other five simulated states are shown in Appendix B.1.2. In general, the f
(ν)
T

models present a milder density truncation with respect to King models, but they

fail to reproduce the central kinematic peak exhibited by the simulated states.

Interestingly, the f (ν), as shown in Fig. 3.15, give a good description of the pres-
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Table 3.9: Best-fit results for one-component f
(ν)
T models

Ψ γ χ̃2
ρtot χ̃2

σtot χ̃2
tot Nfree

Sim 3, 11 Gyr 5.03± 0.01 26.0± 0.2 5.44 41.44 23.36 288

Sim 1, 11 Gyr 5.46± 0.01 55.6± 0.3 2.88 41.68 22.20 302

Sim 6, 4 Gyr 5.26± 0.02 76.8± 0.2 3.00 49.93 26.39 348

Sim 5, 4 Gyr 5.92± 0.01 80.0± 0.3 5.15 56.26 30.60 288

Sim 6, 7 Gyr 6.20± 0.01 58.0± 0.2 6.93 49.93 28.35 334

Sim 5, 7 Gyr 7.06± 0.01 52.4± 0.2 10.83 55.91 33.25 278

sure anisotropy for relaxed systems (like Sim 6 at 7 Gyr) whereas Sim 1 at 11 Gyr

presents a lower degree of radial anisotropy with respect to that of model. This sup-

ports the view that collisions drive the system toward a velocity distribution similar

to that generated by violent relaxation. This is probably also the reason behind the

better agreement between velocity dispersions of these profiles with respect to that

of isotropic King models.

We can conclude that one-component f
(ν)
T models give a good description of

simulations, with the exception of velocity dispersions in the central regions, and

are able to reproduce even the anisotropy profile in case of more relaxed systems.

In general, these models are a far better representation of simulated systems with

respect to King models.

3.3.2 Two-component models

Definition of the two components

As already anticipated in Sect. 2.2, multi-component models represent a simple

way to incorporate central energy equipartition and mass segregation. In particular,

I refer to the two-component models introduced in Sect. 2.2. First, I have divided

the systems into a light component, with mass mlight, and a heavy component, with

mass mheavy. In Sect. 3.1 (in particular, see Tab. 3.4) I identified four classes of

stars: single main sequence stars, single giant stars, single remnants and binaries. In

Tab. 3.10 I report, for each component, the mean star mass. Mean masses of giants,

remnants and binaries are always more than twice the mean mass of main sequence

stars. I have thus identified the main sequence stars with the light component (with

mass mlight = m̄MS) and have combined the other classes into the heavy component

(with mheavy equal to the the mean mass of stars belonging to these three classes).
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Figure 3.14: Best-fit profiles and residuals for Sim 1 at 11 Gyr for one-component

f
(ν)
T models. The upper panels shows the density profile (left) and the density

residuals (right). The lower panel illustrates the velocity dispersion profile (left)

and the velocity dispersion residuals (right).

In Tab. 3.11 I report the total masses of all the classes of stars. In particular,

the last column reports the value of S, which represents the maximum value of

Mheavy/Mlight(mheavy/mlight)
3/2 in the conjecture of the Spitzer “instability” (Eq.

(2.78)). According to Spitzer (see Sect. 2.3), the maximum value of S for a system

in global energy equipartition should be Smax = 0.16. Therefore, the components

that I have just defined violate Spitzer criterion by about an order of magnitude. To

be sure, these systems do not fulfill the global equipartition condition. In addition,

as reported in Tab. 3.13, the condition Mheavy �Mlight and mheavy � mlight is not

really viable. In conclusion, the Spitzer criterion is not applicable to the present

test.

Fitting procedure

For two-component models, the chi-square test described in Sect. 3.3.1 is per-

formed on the density and velocity dispersion profiles of the two components sep-

arately. I first constructed light and heavy component profiles following the same
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Figure 3.15: Anisotropy profiles of Sim 1 at 11 Gyr (left panel) and Sim 6 at 7 Gyr

(right panel) compared with those from the best-fit one-component f
(ν)
T models.

Table 3.10: Definition of the components and values of their mean masses.

Light stars Heavy stars

m̄MS [M�] m̄giants [M�] m̄remn [M�] m̄bin [M�] m̄heavy [M�]

Sim 1, 11 Gyr 0.30 0.85 0.74 0.76 0.74

Sim 3, 11 Gyr 0.30 0.83 0.75 0.81 0.77

Sim 5, 7 Gyr 0.32 0.94 0.76 0.73 0.75

Sim 6, 7 Gyr 0.32 0.94 0.77 0.73 0.75

Sim 5, 4 Gyr 0.33 1.12 0.81 0.77 0.81

Sim 6, 4 Gyr 0.34 1.12 0.82 0.78 0.80

procedure as in Sect. 3.3.1. The number of shells in which simulations were divided

(Nshells,light for the light component and Nshells,heavy for the heavy component) are re-

ported in Tab. 3.12, together with the number of stars contained in each (Nstars,light

and Nstars,heavy). I put at least 3000 stars in each light component shell and at least

1300 heavy stars in each heavy component shell. The two snapshots relative to Sim

6 present higher values of Nshell,heavy because of their high binary fraction (see Tab.

3.1).

Table 3.11: Total masses of the components and Spitzer criterion.
Light stars Heavy stars

MMS [M�] Mgiants [M�] Mremn [M�] Mbin [M�] Mheavy [M�] S (Smax = 0.16)

Sim1, 11 Gyr 1.20× 105 1.33× 103 4.07× 104 1.05× 104 5.25× 104 1.68

Sim3, 11 Gyr 1.11× 105 1.16× 103 4.06× 104 2.06× 104 6.23× 104 2.31

Sim 5, 7 Gyr 1.17× 105 1.58× 103 3.54× 104 1.11× 104 4.81× 104 1.52

Sim 6, 7 Gyr 1.29× 105 1.71× 103 4.46× 104 4.52× 104 9.15× 104 2.55

Sim 5, 4 Gyr 1.31× 105 2.00× 103 2.99× 104 1.25× 104 4.44× 104 1.28

Sim 6, 4 Gyr 1.43× 105 2.18× 103 3.81× 104 5.12× 104 9.15× 104 2.33
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Table 3.12: Bin construction of the two-component models fit.
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 7 Gyr Sim 6, 7 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr

Nshells,light 130 120 121 132 128 138

Nstars,light 3083 3118 3087 3098 3056 3061

Nshells,heavy 51 60 47 80 41 84

Nstars,heavy 1386 1350 1356 1515 1341 1354

For each simulated case I have evaluated χ2
ρ = χ2

ρlight
+χ2

ρheavy
and χ2

σ = χ2
σlight

+

χ2
σheavy

, where

χ2
ρ =

Nshell,light∑
i=1

[
ρlight(ri)− ρs,1ρ̂1(ri/λ)

δρi,light

]2

+

Nshell,heavy∑
i=1

[
ρheavy(ri)− ρs,2ρ̂2(ri/λ)

δρi,heavy

]2

,

(3.25)

χ2
σ =

Nshell,light∑
i=1

[
σlight(ri)− σs,1σ̂1(ri/λ)

δσi,light

]2

+

Nshell,heavy∑
i=1

[
σheavy(ri)− σs,2σ̂2(ri/λ)

δσi,heavy

]2

,

(3.26)

and minimized χ2
tot = χ2

ρ + χ2
σ. For the models I use the same notation as in Sect.

2.2, indicating with the index 1 the quantities associated with the light component

of the model (ρ̂1 and σ̂1) and with index 2 quantities associated with the heavy

component (ρ̂2 and σ̂2). In this case, Nfree = 2Nshell,light + 2Nshell,heavy − λfree.
The i-th residual for the density profile of the j-th component is calculated as(

∆ρ

ρ
(ri)

)
j

=
ρj(ri)− ρs,j ρ̂j(ri/λ)

ρj(ri)
, (3.27)

and the i-th residual for the velocity dispersion profile of the j-th component is

calculated as (
∆σ

σ
(ri)

)
j

=
σj(ri)− σs,jσ̂j(ri/λ)

σj(ri)
. (3.28)

Setting the scales

The presence of an additional component increases the number of scales. How-

ever, as we saw in Sect. 2.2.1 and in Sect. 2.2.2, we can consider some physical

assumptions to reduce the problem to the same number of free parameter as in the

one-component case. In particular, we can assign the ratio between the total masses,

Mlight/Mheavy, to set the ratio between the density scales ρs,2/ρs,1 (by means of Eq.

(2.34) in the case of King models and Eq. (2.42) in the case of f
(ν)
T models). The

ratio between the velocity dispersion scales, σs,2/σs,1, can be set by means of the

assumption of central partial energy equipartition (Eq. (2.35) in the case of the

King models and Eq. (2.43) for the f
(ν)
T models). The value of η, which quantifies
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the degree of central energy equipartition, has been chosen by considering the ratio

between the velocity dispersions of the two components in the central shells. As we

can see from Tab. 3.13, more relaxed systems present higher values of η, suggesting

that relaxation drives these systems toward a condition of central energy equiparti-

tion, but values close to η = 0.5 are never attained. Table 3.13 also lists the ratios

between the single masses and total masses of the two components components.

Table 3.13: Basic parameters for two-component models.
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 7 Gyr Sim 6, 7 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr

mheavy/mlight 2.46 2.57 2.38 2.34 2.42 2.37

Mlight/Mheavy 2.29 1.78 2.43 1.40 2.94 1.57

η 0.232 0.191 0.270 0.269 0.259 0.230

As the problem now presents the same number of free parameters as for one-

component models, only the length and the mass scales of the light component need

to be set. This can be done in the same way as for one-component models. The

length scale can be set by dividing the half-mass radius of the light component of

the simulation, rh,light, by the dimensionless value of the light component half-mass

radius obtained from the model ξh,1:

λ =
rh,light
ξh1

. (3.29)

The mass scale of the light component, Ms,1 can be set by equating the total mass

of the light component Mlight in the simulated system to the mass of the light

component in the model Ms,1M̂1, to find:

Ms,1 =
Mlight

M̂1

. (3.30)

Values of rh,light and Mlight for the sample of simulated cases are shown in Tab. 3.14.

Table 3.14: Physical scales for the two-component models.
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 7 Gyr Sim 6, 7 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr

Mlight [M�] 1.20× 105 1.11× 105 1.17× 105 1.29× 105 1.31× 105 1.43× 105

rh,light [pc] 8.84 14.11 5.79 6.75 4.93 5.68

Two-component King models

In the two-component King models, the scale length is (for notation, we refer to

Sect. 2.2.1):

λ =

√
a

1/2
1

4πGÃ1

. (3.31)
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In this case, the scales can be set in the same way as for one-component models

(Sect. 3.3.1), with a and Ã replaced by a1 and Ã1. We thus have:

a1 =
λ

4πGMs,1

, (3.32)

Ã1 = [Ms,1(4πGλ)3]−1/2. (3.33)

By combining Eq. (3.32) and Eq. (3.33) with Eq. (3.29) and Eq. (3.30) we can find

the value of a1 and Ã1 for a given comparison between model and simulation and

thus ρs,1 = Ã1/a
3/2
1 and σs,1 = a

−1/2
1 .

Best-fit concentration parameters are recorded in Tab. 3.15. As for one-component

Table 3.15: Concentration parameter for the best-fit two-component King models.

Ψ χ̃2
ρ1

χ̃2
σ1

χ̃2
ρ2

χ̃2
σ2

χ̃2
tot Nfree

Sim 3, 11 Gyr 4.700± 0.002 68.44 99.95 31.12 36.24 67.09 359

Sim 1, 11 Gyr 5.165± 0.003 104.06 357.93 53.56 162.53 195.59 361

Sim 6, 4 Gyr 4.651± 0.003 156.59 689.87 45.19 219.91 312.14 443

Sim 5, 4 Gyr 5.651± 0.004 160.24 712.63 86.34 157.21 358.92 337

Sim 6, 7 Gyr 4.855± 0.004 164.17 671.29 67.80 217.85 312.82 423

Sim 5, 7 Gyr 5.680± 0.003 201.66 735.86 49.67 150.21 364.36 335

models, values of χ̃2
tot are very high, of the order of some hundreds. Also in this case

the kinematic comparison gives the worst result, in particular for the first compo-

nent (χ̃2
σ1

). The values of χ̃2
tot for two-component King models χ̃2

tot are even higher

than for one-component King models.

In Fig. 3.16 and Fig. 3.17 the best-fit two-component King models is shown

for Sim 3 at 11, which presents the lowest value of χ2
tot. There is little agreement

between models and simulated systems, except for the density profile of the heavy

component. The light component density profile model overshoots in the central

regions and exhibits a truncation that is too sharp. The velocity dispersion profiles,

as already noted for one-component models, do not really match those of the simu-

lated states. In Fig. 3.18 I show the total profiles obtained from best-fit mode, by

defining the total density as

ρ(r) = ρ1(r) + ρ2(r), (3.34)

and the total velocity dispersion as

ρ(r) =

√
ρ1(r)σ2

1(r) + (m1/m2)ρ2(r)σ2
2(r)

ρ1(r) + (m1/m2)ρ2(r)
, (3.35)
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Figure 3.16: Best-fit profiles and residuals for the light component for Sim 3 at 11

Gyr from two-component King models. In the upper panels we show the density

profile (left) and the density residuals (right). In the lower panel we show the velocity

dispersion profile (left) and the velocity dispersion residuals (right).

where m1/m2 is set equal to mlight/mheavy of the simulated states under consider-

ation. Total velocity dispersion is obtained by weighting the velocity dispersion of

each component by its number density. Also for total profiles there is little agree-

ment between profiles and data.

The complete set of results for the two-component King models is recorded in

Appendix B.2.1. The King models present a truncation that is too sharp, and the

central densities predicted by these models are too high with respect to those of the

simulated states. In addition, the velocity dispersion profiles of the models are too

flat in the central regions and decrease too rapidly in the outermost regions. We

conclude that, even by introducing a second component, the King models cannot be

used to give a proper description of the systems under consideration.
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Figure 3.17: Best-fit profiles and residuals for the heavy component of Sim 3 at 11

Gyr from two-component King models. In the upper panels we show the density

profile (left) and the density residuals (right). In the lower panel we show the velocity

dispersion profile (left) and the velocity dispersion residuals (right).

Two-component f
(ν)
T models

For the f
(ν)
T models, the length scale is (with the notation introduced in Sect.

2.2.2):

λ =
1

a
1/4
1 d1

(3.36)

Thus physical scales can be assigned in the same as in one-component models,

replacing a, A and d by a1, A1 and d1. We have:

a1 =
λ

Ms,14πGγ
, (3.37)

d1 =

[
Ms,1

λ5
(4πGγ)

]1/4

, (3.38)

A1 = [Ms,1(4πGλγ)3]−1/2. (3.39)

Combining Eq. (3.37) and Eq. (3.39) with Eq. (3.29) and Eq. (3.30) we can find

the values of a1, d1 and A1 and thus of ρs,1 = A1/a
3/2 and σs,1 = a

−1/2
1 .
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Figure 3.18: Total profiles and residuals of the best-fit result for Sim 3 at 11 Gyr

with two-component King models. In the upper panels we show the density profile

(left) and the density residuals (right). In the lower panel we show the velocity

dispersion profile (left) and the velocity dispersion residuals (right).

The best-fit results for two-component f
(ν)
T models are reported in Tab. 3.16.

By comparing χ̃2
tot obtained with these models with that in Tab. 3.15, we no-

tice a significant improvement with respect to King models also in the case of the

two-component models. There is a good agreement between models and simulated

systems. In particular, we can notice that the values for χ2
ρ1

and χ2
ρ2

are low: these

models are a good representation of the density profiles of the simulated states.

The best-fit result with minimum chi-square, Sim 5 at 7 Gyr (Fig. 3.19 and

Fig. 3.20), shows a good matching with the density profiles of the simulated states:

this model intercepts all the uncertainty bars. The velocity dispersion profiles of

the model show, in this case too, quite different shapes with respect to those of

the simulated state, with differences of the order of 5% in central regions and of the

order of 20% for the outermost point. As opposed to the one-component f
(ν)
T models,

two-component models reproduce the peak of the velocity dispersion profile. The

total density and velocity dispersion profiles (defined in Eq. (3.34) and Eq. (3.35),

respectively) of the best-fit two-component f
(ν)
T model exhibit a good matching with

total profiles of the simulated state, as shown in Fig. 3.21. Finally, the anisotropy
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Table 3.16: Best-fit parameters for two-component f
(ν)
T models.

Ψ γ χ2
ρ1

χ2
σ1

χ2
ρ2

χ2
σ2

χ2
tot Nfree

Sim 3, 11 Gyr 3.85± 0.01 28.4± 0.1 18.90 21.90 5.25 15.58 16.82 358

Sim 1, 11 Gyr 4.467± 0.002 47.8± 0.2 13.58 18.05 7.73 15.89 14.46 360

Sim 6, 4 Gyr 4.103± 0.009 67.4± 0.2 9.65 20.82 8.15 8.81 12.52 442

Sim 5, 4 Gyr 4.708± 0.001 67.0± 0.2 7.02 30.92 8.11 13.22 16.70 336

Sim 6, 7 Gyr 4.115± 0.003 56.6± 0.2 3.68 21.35 7.05 6.59 10.23 422

Sim 5, 7 Gyr 5.46± 0.02 49.0± 0.2 7.13 20.76 16.34 13.05 13.89 334

profiles of the best-fit model (Fig. 3.22) can reproduce the local degree of anisotropy

for the both components. Only in the outermost regions the degree of anisotropy

predicted by the model is too high (α → 2) with respect to that found in the

simulated state. This analysis seems to confirm the picture according to which

collisions tend to drive the system to a velocity distribution similar to that generated

by means of violent relaxation.

The complete set of results for the two-component f
(ν)
T models is recorded in

Appendix B.2.2. Two-component f
(ν)
T models give a good description of the density

and the velocity dispersion profiles for the two components of the simulated states.

In addition, they are able to reproduce the central peak in the velocity dispersion

profiles. There is also a good agreement between the anisotropy profiles of the

simulated states and those obtained from the best-fit models but only for more

relaxed systems.

We can conclude that two-components f
(ν)
T provide a good representation of the

simulated states, in particular for more relaxed systems. They are able to reproduce

the different behaviors of the density profiles and the central velocity dispersions

of the two components, thus incorporating mass segregation and central energy

equipartition. For this reason, in Sect. 3.4, these models are considered to take into

account the variation of the M/L ratio generated by mass segregation.

3.4 M/L ratio and comparison with observations

In Sect. 1.3.4 we explained that mass segregation has important consequences

on the local value of the mass-to-light ratio, M/L. In this respect, we also referred to

the results found by Bianchini et al. (2017) [10] by considering the set of simulations

studied in the present thesis. Giants and stellar remnants both segregate towards

the center of clusters, but they obviously generate opposite variations of the M/L

ratio: dark remnants increase the M/L value, whereas bright red giants tend to
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Figure 3.19: Best-fit profiles and residuals for the light component of Sim 5 at 7 Gyr

from two-component f
(ν)
T models. In the upper panels we show the density profile

(left) and the density residuals (right). In the lower panel we show the velocity

dispersion profile (left) and the velocity dispersion residuals (right).

lower it. The combined effects of mass segregation can thus lead to variations of

the M/L ratio in central regions, that is a radial gradient in its profile. Bianchini et

al. (2017) [10] noted that the projected M/L profiles may exhibit a dip in the very

central regions, reach a minimum and then increase as we move outward.

We could wonder if two-component f
(ν)
T models which, as described in Sect.

3.3.2, incorporate mass segregation and give a good representation of the density

profile, are also able to reproduce the complex behavior of the M/L ratio. I have

constructed intrinsic M/L profiles (of the total system and of the single components)

of each simulated state by dividing the system into shells (as described in Sect. 3.3.1)

and evaluating the ratio between total mass and the total luminosity in the V-band

in each shell. I then assigned to the two components of f
(ν)
T models a representative

luminosity equal to the mean luminosity of that component in the simulated state.

In Tab. 3.17 I list the mean luminosities of each component in the simulated states

and their M/L ratios. Values of the M/L ratio for the heavy component are generally

lower than those for the light component because of the high luminosity of giant

stars (see also Tab. 3.4).
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Figure 3.20: Best-fit profiles and residuals for the heavy component of Sim 5 at 7 Gyr

from two-component f
(ν)
T models. In the upper panels we show the density profile

(left) and the density residuals (right). In the lower panel we show the velocity

dispersion profile (left) and the velocity dispersion residuals (right).

Table 3.17: Mean star luminosities and M/L ratios of two components
Sim 1, 11 Gyr Sim 3, 11 Gyr Sim 5, 4 Gyr Sim 6, 4 Gyr Sim 5, 7 Gyr Sim 6, 4 Gyr

L̄light [L�] 0.09 0.09 0.19 0.205 0.13 0.13

L̄heavy [L�] 1.15 0.84 3.78 2.29 2.26 1.34

(M/L)light [M�/L�] 3.26 3.48 1.72 1.66 2.54 2.44

(M/L)heavy [M�/L�] 0.65 0.92 0.21 0.35 0.33 0.56

I evaluated the total M/L ratio of the two-component f
(ν)
T models by dividing

the models into 400 radial shells and evaluating the ratio between the total mass

and the total luminosity in each shell.

In Fig. 3.23 I illustrate the M/L ratios for four simulated states (black line),

compared with those obtained from the best-fit from two-component f
(ν)
T models

(red lines). The models under consideration cannot reproduce the M/L profiles of

the simulated states. There is a mild agreement only in the central parts of the

system, usually out to a distance of the order of the half-mass radius (see Tab. 3.7)

but the models predict too low values for the M/L ratio in the outer regions. The

reason behind this discrepancy is mass segregation within the light component. As
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Figure 3.21: Total profiles and residuals of Sim 5 at 7 Gyr from the best-fit result

of two-component f
(ν)
T model. In the upper panels we show the density profile (left)

and the density residuals (right). In the lower panel we show the velocity dispersion

profile (left) and the velocity dispersion residuals (right).

already shown in Fig. 3.8 and Fig. 3.9, main sequence stars (the light component of

the models) are affected by mass segregation, which generates a gradient in the M/L

profile within the light component itself. In fact, if we consider the M/L profiles of

the single components (Fig. 3.24), we find that the profile of the light component of

the simulated system (black line) exhibits a remarkable increase from the center to

the outermost regions. As we assigned a single constant value of M/L to the light

component, our simple dynamical model cannot incorporate this feature. Similarly,

all previous studies based on one-component King models cannot incorporate M/L

gradients and would naturally fail if gradients are present. In this respect, the heavy

component shows less significant gradients, as its luminosity is dominated by giants

which, as explained in Sect. 3.2.2, are less affected by mass segregation.

3.4.1 Application to observed globular clusters

The application of models which do not take into account mass segregation

properly could lead to misleading results in observational studies. For example,
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Figure 3.22: Anisotropy profiles of Sim 5 at 7 Gyr for the light component (left

panel) and and the heavy component (right panel) compared with those obtained

from the best-fit two-component f
(ν)
T model.

Di Cecco et al. (2013) [17] studied the density distribution of stars in the cluster

M92 (NGC 6341) in two different ways: by means of the projected surface brightness

(SB) and of the number density projected profile (ND). They performed a fit to these

profiles separately by means of one-component King models (see Sect. 2.1.3) and

found that, even if the number density and the surface brightness profiles considered

came from the same systems, best-fit parameters turned out to be significantly

different. In fact, the number density profile is well-fitted by a King model with Ψ =

6.91±0.02 whereas the surface brightness profile best-fit result gives Ψ = 8.40±0.01.

The authors argued that this contradictory result might be due to the fact that each

profile represents the density distribution of different stars: the number density

profile, derived by considering the radial distribution of both luminous and faint

stars, is dominated by main sequence stars, which greatly outnumber evolved giant

stars. On the other hand, the surface brightness profile is heavily affected by the

presence of the brighter giant stars. The differences in the best-fit models thus

reflect the intrinsic differences in the radial distribution of the stellar tracer that

determines each profile, which is different in the presence of mass segregation.

I verified that, as suggested by Di Cecco et al. (2013) [17], the number density

profile is largely determined by the light component and that the surface brightness

profile is instead dominated by the heavy stars. I considered Sim 5 at 7 Gyr and

constructed the projected number density profiles and the surface brightness profiles

for the total system and for each component. To this purpose, I divided the plane

perpendicular to a certain direction (indicated as z in the output file) into radial

shells, keeping the number of stars constant in each shell (as was done in the case

of the intrinsic profiles, see Sect. 3.3). As my objective is to construct “observable”

profiles, I ignored remnants. For each shell, I calculated the number density as the
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Figure 3.23: Total M/L profiles (black lines) for Sim 1 at 11 Gyr (left upper panel),

Sim 5 at 7 Gyr (right upper panel), Sim 5 at 4 Gyr (left lower panel), Sim 6 at 7

Gyr (right lower panel) compared with those obtained from best-fit models for two-

component f
(ν)
T models. The profiles of the simulated states are jagged because, in

each shell, great contribution to luminosity comes from giant stars. As the number

of giants is very small, the total luminosity could vary very much from shell to shell.

ratio between the number of stars and the area Ashell = π(R2
out,shell−R2

in,shell), where

Rin,shell and Rout,shell are the projected inner and outer radii of the shell, respectively.

The surface brightness profile was calculated by dividing the total luminosity of each

shell by the area Ashell. The uncertainties were calculated by means of a bootstrap

resampling as for the intrinsic profiles (see Appendix A).

I compared the profile of the total system and that of the single components,

as illustrated in Fig. 3.25. The projected number density profile, n(R), obtained

by considering all the stars (black points), nearly overlaps with that obtained by

considering only the light component (red points). On the other hand, the total

surface brightness profile, I(R), of the system reflects that of the heavy component

(green points), confirming the argument by Di Cecco et al. (2013) [17]. This means

that the best-fit concentration parameter obtained from the fit to the number density

profile mainly describes the distribution of light stars, whereas the surface brightness
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Figure 3.24: M/L profiles for the light component (left) and for the heavy component

(right) for Sim 5 at 7 Gyr (upper panels) and Sim 1 at 11 Gyr (lower panels). In

these graphics, the profiles of the simulated systems (black lines) are compared to

the values assigned to each component in the two-component f
(ν)
T models (red lines).

gives mainly information about the heavy stars.

I then tried to understand which observed profile allows to obtain a better rep-

resentation of the underlying mass density profile. To this purpose, I considered

Sim 5 at 7 Gyr and, in particular, the profiles that we could ideally observe, that is

the total projected number density profile (without remnants) and the total surface

brightness profile. I then compared these profiles to those obtained from the best-

fit result for two-component f
(ν)
T models by converting the projected mass density

profile.

I constructed the projected mass profile of the simulated state by dividing the

system into projected shells and by evaluating the ratio between the total mass of

each shell and the area Ashell. The projected density profile for the i-th component

ρp,i(R) of the best-fit f
(ν)
T model was constructed by integrating:

ρp,i(R) =

∫ ∞
−∞

ρi(r)dz =

∫ ∞
−∞

ρi(
√
R2 + z2)dz. (3.40)

This projected mass density profiles of the best-fit two-component f
(ν)
T model, com-
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Figure 3.25: The projected number density profile (left panel) and the surface bright-

ness profile (right panel) for simulation Sim 5 at 7 Gyr. Black points correspond

to the total profiles, red points correspond to the profiles of the light component

and green points correspond to the profiles of the heavy component. The number

density is mainly determined by the light component whereas the surface brightness

is mainly determined by the heavy component. Large uncertainties in the total sur-

face brightness profile are due to the presence of very different luminosities between

giant stars and main-sequence stars, that affect the bootstrap estimate of standard

error (see Appendix A).

pared with those of Sim 5 at 7 Gyr, are illustrated in Fig. 3.26. This model provides

a very good description of the projected mass density profile for the total profile and

for each component.

I converted the projected total mass density profile into a projected number

density profile. I divided the profile of each component by the respective mass and

calculated the total number density as the sum of the two number densities (two-

component conversion). To remove the contribution of remnants from the number

density profile, I multiplied the number density profile of the heavy component by

the fraction of non-remnant heavy stars. Analogously, I converted the total mass

profile into a surface brightness profile. In this case I divided each component by the

respective mass-to-light ratio (see Tab. 3.17) and then calculated the total surface

brightness profile as the sum of the profiles of the two components.

As shown in Fig. 3.27, the number density profile obtained from this conversion

overestimates the number density of the system at the center, as a result of mass

segregation: in fact, if we convert the mass density profile into a number density

profile by dividing by the mean mass, at the center we divide by a value which is

smaller than the actual mean mass of the system in that region. The number density

profile obtained in this way will thus overestimate the value of the central density.

On the other hand, the surface brightness profile obtained from a one-component
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Figure 3.26: Projected mass density profiles of Sim 5 at 7 Gyr (red points) compared

to the projected two-component profiles obtained from the best-fit two-component

f
(ν)
T model (black line). Left upper panel shows the profile of the light component.

Right upper panel shows the profile of the heavy component. Lower panel shows

the total profile. There is a very good agreement in all the cases.

conversion overestimates the profile of the simulated state. This is, in particular, a

consequence of the gradient in the M/L ratio of the light component, as shown in

Fig. 3.24. In this case, when we make the conversion from the mass profile to the

surface brightness profile, in the central regions we divide by a M/L ratio higher

than the actual value in that region.

This discussion suggests that the result obtained by Di Cecco et al. (2013) [17]

by fitting the number density profile underestimates the central concentration of the

system, whereas the result obtained from the total luminosity profile overestimates

it. We can also say that the concentration parameter which probably best traces the

mass density of the system ranges between the two values found by Di Cecco et al.

(2013) [17] as the both profiles that they considered are affected by mass segregation

with gradients in opposite directions.

Thus, mass segregation has to be taken into account in observational studies, as

it could lead to misleading results in the conversion from projected number density

profiles and surface brightness profiles to projected mass profiles. As main sequence
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Figure 3.27: Projected number density (left panel) and surface brightness profile

(right panel) profile of Sim 5 at 7 Gyr compared with those obtained from the best-

fit result for two-component f
(ν)
T models. The profiles obtained from the model

cannot reproduce those of the simulation state because of mass segregation.

stare are more affected by mass segregation, a possible solution to this problem could

be to try to restrict the attention the surface brightness profile of the red giants,

which seems to be less affected by mass segregation and gradients in the M/L ratio.

To understand if this procedure may lead to results less affected by mass segregation,

I constructed the projected number density and surface brightness profiles for the

single components of Sim 5 at 7 Gyr and compared them to those obtained by

converting the projected mass profiles of the single components of the best-fit f
(ν)
T

models. As illustrated in Fig. 3.28, the number density and surface brightness

profile of the light component do not match that obtained from the models. On

the other hand, the surface brightness of the best-fit model heavy component show

a good matching with that of the simulated state. I point out that the number of

shells is very small for the heavy component because of the very small number of

giant stars in the simulated state. This aspects causes more statistical fluctuations

with respect to measurements on the main-sequence stars.

This discussion suggests that a method to reduce the bias generated by mass

segregation could be obtained by considering the surface brightness profile of the

heavy component, which is less affected by gradients in the M/L profile. We can

conclude that measures on the heavy component surface brightness profile seem to

be less affected by mass segregation. On the other hand, unfortunately, measures of

giant stars are more affected by fluctuations.
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Figure 3.28: The projected number density profiles (left panels) and the projected

surface brightness profiles (right panels) for the two components of Sim 5 at 7 Gyr.

We can notice that the only profile which seems to be matched by the best-fit profile

two-components f
(ν)
T model is the heavy component surface brightness profile.
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Chapter 4

Conclusions and perspectives

In this thesis I have studied energy equipartition and mass segregation in globular

clusters focusing on a set of simulated states, that is selected “snapshots” taken

from realistic Monte Carlo simulations that incorporate both dynamical and stellar

evolution. Energy equipartition and mass segregation have been investigated by

means of two-component King models (1966) [34] and f
(ν)
T models [16], in which

the two components represent light (main sequence) stars and heavy stars (giants,

remnants, and binaries) respectively. I also performed a critical discussion of the so

called Spitzer “instability”. I finally considered the consequences of mass segregation

on the local value of mass-to-light M/L ratio, and, in particular, how gradients in

its profile can affect the observations. The main results of this thesis are:

• A condition of only partial global energy equipartition is attained in systems

generated by simulations, as already observed by Bianchini et al. (2016) [12].

Energy equipartition is not reached strictly even by limiting the attention to

regions of the system close to the center, where relaxation is more effective.

Only a condition of partial local equipartition is met at the center of the

cluster, where can be quantified by means of the parameter η introduced by

Trenti & van der Marel (2013) [58]. All the simulated states that we have

considered show values η ≤ 0.27, smaller than expected in case of full central

energy equipartition (η = 0.5).

• For these systems, the Vishniac criterion fails, consistent with the fact that

global energy equipartition is not reached. In addition, density profiles of

these simulations are well described by two-component f
(ν)
T models (see below)

which are found to violate the condition of homology at the basis of Vishniac’s

argument.

• Mass segregation is present also in the least relaxed systems, which indicates
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that this process is very efficient. Mass segregation characterizes not only the

stellar system as a whole, but also main sequence stars, dark remnants and

binaries. Only giant stars do not exhibit mass segregation, because the giant

phase is so short that, at every snapshot, only stars in a very small range of

masses are in this evolutionary phase.

• One-component King models do not offer a good representation of the simu-

lated states. The density profiles of these models present a sharp truncation

and high central densities, and velocity dispersion profiles are not compatible

with those measured in the simulations. On the other hand, one-component

f
(ν)
T models provide a reasonable description of the density profiles of the sim-

ulated states, except for the very central regions. Velocity dispersion profiles

are generally characterized by a rapid decline, not well captured by the f
(ν)
T

models. The anisotropy profiles of more relaxed systems are well fitted by the

models, suggesting that collisions drive systems toward a velocity distribution

similar to that generated by violent relaxation.

• The two components defined in the way described and justified in the thesis

do not fulfill the Spitzer criterion.

• Two-component King models present the same limitations as the one-component

case. On the other hand, two-component f
(ν)
T models give an even better rep-

resentation of these systems with respect to one-component models, in par-

ticular for the density distributions. Velocity dispersion profiles still present

some differences, but two-component f
(ν)
T models are able to reproduce the

central peak in the velocity dispersion shown by simulations and the increase

in anisotropy profiles in more relaxed systems. I conclude that these models

offer a reasonable representation of the simulations, also in relation to mass

segregation and central energy equipartition.

• The variation of the mass-to-light M/L ratio generated by mass segregation

cannot be reproduced by two-components f
(ν)
T models. This is due primarily to

the mass segregation within the light component (main sequence stars). This

aspect can influence the measurement of the relevant parameters obtained by

means of optical observations. In particular, the characterization of the mass

density profile by means of the observed number density profile underestimates

the central concentration of the system whereas the surface brightness profile

overestimates it. A possible solution to this problem could be to try to restrict

the attention the surface brightness profile of the red giants, which seems to
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be less affected by mass segregation and gradients in the M/L ratio, but is,

unfortunately, more affected by fluctuations..

In conclusion, two-components f
(ν)
T models appear to offer a realistic represen-

tations of globular clusters and a reasonably starting point to investigate dynamical

mechanisms related to mass segregation and energy equipartition inside these stellar

systems.

One future goal that is encouraged by the results of the present thesis is to make

an attempt at using the two-component f
(ν)
T models to interpret the real data of the

new globular clusters diagnostics made possible by GAIA.

On the theoretical point of view, a natural and interesting development of this

work could be the construction of models able to take into account different degrees

of anisotropy in the outer regions, following in detail the indications provided by

the simulations. For this, a better understanding of the mechanisms leading to the

anisotropy profiles resulting from collisionality would be desired.

Finally, the development of anisotropy in relaxed systems is still a not much un-

derstood problem which has been studied almost exclusively by means of numerical

simulations and a theoretical comprehension of this process is still lacking.
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Appendix A

Bootstrap estimate of standard

error

Let F̂ be an empirical distribution with observed values xi, i = 1, 2, ..., n. A

bootstrap sample is defined as a random sample of size n drawn from F̂ , indicated

as x∗ = (x∗1, x
∗
2, ..., x

∗
n),

F̂ → (x∗1, x
∗
2, ..., x

∗
n). (A.1)

The star notation indicates that x∗ is not the actual data set x, but rather a random-

ized, or resampled, version of x. Bootstrap data points x∗1, x
∗
2, ..., x

∗
n are a random

sample of size n drawn with replacement from the empirical population of n objects

(x1, x2, ..., xn). We might have x∗1 = x7, x∗2 = x3, x∗3 = x3, x∗4 = x22, ..., x∗n = x4.

The bootstrap data set consists of members of the original data set, some appearing

once, some appearing twice, etc.

Let θ̃ be a statistics obtained by applying a function s(·) to x. The bootstrap

replication of θ̂, corresponding to a bootstrap data set x∗ is:

θ̂∗ = s(x∗), (A.2)

where the quantity s(x∗) is the result of applying the same function s(·) to x∗ as

was applied to x. For example if s(x) is the sample mean, then s(x∗) is the mean

on the bootstrap data. Now, let seF (θ̂) be the standard error of a statistics θ̂.

Unfortunately, for virtually any estimate other than the mean, there is no formula

that enables to compute the numerical value of the ideal estimate exactly. A common

method used to obtain a good approximation to the numerical value of seF̂ (θ̂) is

the so-called bootstrap method, which is based on the creation of multiple random

samples for a certain empirical distribution.

To implement the bootstrap method, a random number device selects integers

i1, i2, ..., in, each of which equals any value between 1 and n. The bootstrap sample
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consists of the corresponding members of x,

x∗1 = xi1 , x
∗
2 = xi2 , x

∗
n = xin . (A.3)

The bootstrap method works by drawing many independent bootstrap samples,

evaluating the corresponding bootstrap replications, and estimating the standard

error of θ̂ as the empirical standard deviation of replications:

ŝeB(θ̂) =

{
B∑
b=1

[θ̂∗(b)− θ̂∗(·)]2

B − 1

}1/2

, (A.4)

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)/B is the mean value of replications of the selected statis-

tics. The result is called the bootstrap estimate of standard error, denoted by ŝeB,

where B is the number of bootstrap samples used.

We may now wonder how large should be B, the number of bootstrap replications

used to evaluate ŝeB. The ideal number of bootstrap estimates one should take is

B → ∞. Actually, time constraints may dictate a small value of B if θ̂ is a very

complicated function of x (the amount of computer time increases linearly with B).

As observed by Efron and Tibshirani (1993) [20], even a small number of bootstrap

replications, B = 25, is usually informative. B = 50 is often enough to give a

good estimate of seF (θ̂). Very seldom are more than B = 200 replications needed

for estimating standard error. For the determination of uncertainties of density

and velocity distribution profiles described in Sect. 3.3.1, I considered B = 200

bootstrap replication.
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Appendix B

Fit results

B.1 One-component models

B.1.1 One-component King models
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Figure B.1: Best-fit result for Sim 1 at 11 Gyr obtained from one-component King

models.
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B.1. ONE-COMPONENT MODELS
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Figure B.2: Best-fit result for Sim 6 at 4 Gyr from one-component King models.
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Figure B.3: Best-fit result for Sim 5 at 4 Gyr from one-component King models.
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B.1. ONE-COMPONENT MODELS

f
K

0.1 1 10 100

0.001

0.100

10

1000

r [pc]

ρ
[M

⊙
/p
c3
]

Sim 5, 7 Gyr - Density profile

0 10 20 30 40 50 60 70

-1.0

-0.5

0.0

0.5

1.0

r [pc]

Δ
ρ
/ρ

Density residuals

f
K

0.1 1 10 100

2

4

6

8

10

r [pc]

σ
[k
m
/s
]

Sim 5, 7 Gyr - Velocity dispersion profile

0 10 20 30 40 50 60 70

-1.0

-0.5

0.0

0.5

1.0

r [pc]

Δ
σ
/σ

Velocity dispersion residuals

Figure B.4: Best-fit result for Sim 5 at 7 Gyr from one-component King models.
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B.1. ONE-COMPONENT MODELS

B.1.2 One-component f
(ν)
T models
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Figure B.5: Best-fit result for Sim 3 at 11 Gyr obtained from one-component f
(ν)
T

models.
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Figure B.6: Best-fit result for Sim 6 at 4 Gyr obtained from one-component f
(ν)
T

models.
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Figure B.7: Best-fit result for Sim 5 at 4 Gyr obtained from one-component f
(ν)
T

models.
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Figure B.8: Best-fit result for Sim 6 at 7 Gyr obtained from one-component f
(ν)
T

models.
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Figure B.9: Best-fit result for Sim 5 at 7 Gyr obtained from one-component f
(ν)
T

models.
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Figure B.10: Anisotropy profiles for the best-fit models obtained from one-

component f
(ν)
T models.
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Figure B.11: Best-fit result for the light component of Sim 1 at 11 Gyr obtained

from two-component King models.
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Figure B.12: Best-fit result for the heavy component of Sim 1 at 11 Gyr obtained

from two-component King models.
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Figure B.13: Best-fit result for the light component of Sim 6 at 4 Gyr obtained from

two-component King models.
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Figure B.14: Best-fit result for the heavy component of Sim 6 at 4 Gyr obtained

from two-component King models.
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Figure B.15: Best-fit result for the light component of Sim 5 at 4 Gyr obtained from

two-component King models.
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Figure B.16: Best-fit result for the heavy component of Sim 5 at 4 Gyr obtained

from two-component King models.
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Figure B.17: Best-fit result for the light component of Sim 6 at 7 Gyr obtained from

two-component King models.
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Figure B.18: Best-fit result for the heavy component of Sim 6 at 7 Gyr obtained

from two-component King models.
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Figure B.19: Best-fit result for the light component of Sim 5 at 7 Gyr obtained from

two-component King models.
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Figure B.20: Best-fit result for the heavy component of Sim 5 at 7 Gyr obtained

from two-component King models.
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Figure B.21: Total density and velocity dispersion profiles for the best-fit model of

Sim 1 at 11 Gyr obtained from two-component King models.
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Figure B.22: Total density and velocity dispersion profiles for the best-fit model of

Sim 6 at 4 Gyr obtained from two-component King models.
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Figure B.23: Total density and velocity dispersion profiles for the best-fit model of

Sim 5 at 4 Gyr obtained by means of a two-components King model.
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Figure B.24: Total density and velocity dispersion profiles for the best-fit model of

Sim 6 at 7 Gyr obtained from two-component King models.
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Figure B.25: Total density and velocity dispersion profiles for the best-fit model of

Sim 5 at 7 Gyr obtained from two-component King models.
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Figure B.26: Best-fit result for the light component of Sim 3 at 11 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.27: Best-fit result for the heavy component of Sim 3 at 11 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.28: Best-fit result for the light component of Sim 1 at 11 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.29: Best-fit result for the heavy component of Sim 1 at 11 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.30: Best-fit result for the light component of Sim 6 at 4 Gyr obtained from

two-component f
(ν)
T models.
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Figure B.31: Best-fit result for the heavy component of Sim 6 at 4 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.32: Best-fit result for the light component of Sim 5 at 4 Gyr obtained from

two-component f
(ν)
T models..
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Figure B.33: Best-fit result for the heavy component of Sim 5 at 4 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.34: Best-fit result for the light component of Sim 6 at 7 Gyr obtained from

two-component f
(ν)
T models.
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Figure B.35: Best-fit result for the heavy component of Sim 6 at 7 Gyr obtained

from two-component f
(ν)
T models.
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Figure B.36: Total density and velocity dispersion profiles for the best-fit model of

Sim 3 at 11 Gyr obtained from two-component f
(ν)
T models.
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Figure B.37: Total density and velocity dispersion profiles for the best-fit model of

Sim 1 at 11 Gyr obtained from two-component f
(ν)
T models.
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Figure B.38: Total density and velocity dispersion profiles for the best-fit model of

Sim 6 at 4 Gyr obtained from two-component f
(ν)
T models.
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Figure B.39: Total density and velocity dispersion profiles for the best-fit model of

Sim 5 at 4 Gyr obtained from two-component f
(ν)
T models.

146



B.2. TWO-COMPONENT MODELS

fT,2C
(ν)

0.5 10

0.001

0.010

0.100

1

10

100

1000

r [pc]

ρ
[M

⊙
/p
c3
]

Sim 6, 7 Gyr - Density profile

0 10 20 30 40 50 60 70

-1.0

-0.5

0.0

0.5

1.0

r [pc]

Δ
ρ
/ρ

Density residuals

fT,2C
(ν)

0.5 10

2

4

6

8

10

12

r [pc]

σ
[k
m
/s
]

Sim 6, 7 Gyr - Velocity dispersion profile

0 10 20 30 40 50 60 70

-1.0

-0.5

0.0

0.5

1.0

r [pc]

Δ
σ
/σ

Velocity dispersion residuals

Figure B.40: Total density and velocity dispersion profiles for the best-fit model of

Sim 6 at 7 Gyr obtained from two-component f
(ν)
T models.
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Figure B.41: Total density and velocity dispersion profiles for the best-fit model of

Sim 5 at 7 Gyr obtained from two-component f
(ν)
T models.
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Figure B.42: Light component and heavy component anisotropy profiles for the best-

fit models of Sim 3 at 11 Gyr and Sim 1 at 11 Gyr obtained from two-component

f
(ν)
T models.
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Figure B.43: Light component and heavy component anisotropy profiles for the

best-fit models of Sim 6 at 4 Gyr and Sim 5 at 4 Gyr obtained from two-component

f
(ν)
T models..
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Figure B.44: Light component and heavy component anisotropy profiles for the

best-fit model of Sim 6 at 7 Gyr obtained from two-component f
(ν)
T models.

149



B.2. TWO-COMPONENT MODELS

+

+
+

+

++
+

++

++
+

++
+
+

+
+
+
+

+
+
+
+

+
+
+
++
+
+
+

+

+

+
+
+

+++
+

+
+
++++
++++
+++
++
++
+++
+
++++
+++
+
++
+++
+
++
++
+

+
++
+
++
+

+

++

++
+++
+++

+++
++++

+
+
+
+++++++

+++++++
+++++

+++
+ + + + + +

+
+ + + +

+ +
+

fT,2C
(ν)

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 3, 11 Gyr - Anisotropy profile

+

++

+
++
+
++
+
+
++
+
+++++
+
+

+++
+

+
+

+
++
+
++
+++

+

+

++
+
+
+
+
++
++
+
+

+

++

+
+
+
++
++
+
+

+
+
+
+
+
+
++++
+
+
+

+
+
++++++
++
++++++
+
+

+++
+

+

+
+
+
++++

+++++
+
+
+
++
+++
+
+
+++++

++
++++

++
++++

++
+ + + + +

+ + + + + +
+ +

fT,2C
(ν)

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 1, 11 Gyr - Anisotropy profile

+
+
+
+
+
++
+
+

+

+
+++++++
+++
+
++
++
+

+++
+

+
++

+

+
+

+

+++
++

+
+
+
+

+

+
+++++

+
++
+
+

+

+
+

+

+
+

++
+
++++
+
++

+
++
++++
++++
+
++
++
+
++
+
+

+
+
++
++
+
++
++
++++
++++++
+
+
+
+++++
+

+
+
++++
+++++
+
++
+
+
++++
++
++
++
++++

++
++++

+ + + +
+ + + + + + + + +

fT,2C
(ν)

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 6, 4 Gyr - Anisotropy profile

++
+++++

+
++
+

+

+

+

++
+
+
+

+++
+
+

++
+

++

+

+++
+
+
+
+++
+
+

+

+

+
+
+
+

+++

+
+
+
++
++++
++

+
+
++
+++++

+++++
+
+

++++++

++
+
++

+
+

+
++++
++
++++
+
+++
+++
+
+++
++
++++++

++
+++

+++
++

++
+ + + + +

+ + +
+ +

+ + +

fT,2C
(ν)

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 5, 4 Gyr - Anisotropy profile

++
+

+

+
++
+

+

+
++
+

+

+++
++
+

+

+
+

+
+
+

+
+
+
+

++

+

+

+++

+

+
+
++

+

+

+

++

+

+
+++
+
+
+++
+

+++
+
+++
+
+++
++

+
++++

+

+
+
++
+
+
+
++
++

+

+
+

++
+
+
+++
+++
+
+
++++
++
+
+
++
++
++
++

+

+++
++++
++
++++
++++

++++
+
++
++
+++

+++
++ + + + + + + + + + + + + + +

fT,2C
(ν)

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 6, 7 Gyr - Anisotropy profile

+++
++++
+
++

+
+

+

+++
++++
++
++

+

++++

+
++++
++++
+

+

+
+

+++++

+++

+

++
+
+
++
+++
++++
+
+
+

+

++++
+++
+++

+++++
+++
+++
+++

+++
++
+
++
+++
+++
+
++
++
++++

++
+
+++

++
+++

+ + + + + + +
+ + +

+ + +
+

fT,2C
(ν)

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

r [pc]

α
(r
)

Sim 5, 7 Gyr - Anisotropy profile

Figure B.45: Total anisotropy profiles for the best-fit models obtained from two-

component f
(ν)
T models.
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